Preliminary Geotechnical Report

Matilija Canyon Road Storm Damage,

Approximate Mile Post 0.3 to 0.7, Ojai (Ventura County), California

Yeh Project No.: 223-274

September 25, 2024

Prepared for:

Ventura County Public Works Agency 800 S. Victoria Avenue Ventura, California 93009 Attn: Mr. Joshua Patricio

Prepared by:

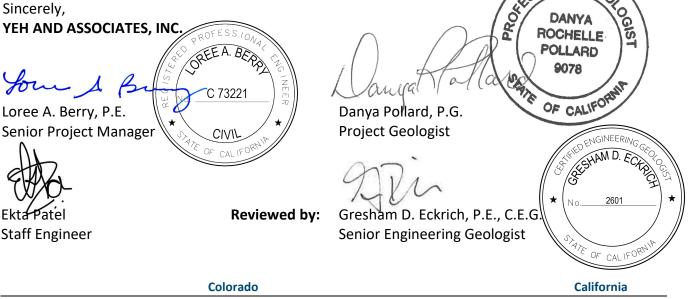
Yeh and Associates, Inc. 56 E. Main Street, Suite 104 Ventura, California 93001 Phone: 805-481-9590

Project No. 223-274

September 25, 2024

Ventura County Public Works Agency 800 S. Victoria Avenue Ventura, California 93009

Attn: Mr. Joshua Patricio


Subject:Preliminary Geotechnical Report, Matilija Canyon Road Storm Damage, ApproximateMile Post 0.3 to 0.7, Ojai (Ventura County), CA

Dear Mr. Patricio:

Yeh and Associates, Inc. is pleased to submit this preliminary geotechnical report with recommendations for alternatives to improve and restore the roadway following storm damage along Matilija Canyon Road between approximately Mile Post 0.3 and 0.7 in Ojai, California. This report was prepared in accordance with our professional services agreement AE24-031, dated March 6, 2024.

The geotechnical evaluation consisted of a program of field exploration, review of available geotechnical data, laboratory testing, and preliminary analyses. Field and laboratory data collected for this study are attached to the report with a graphic showing the locations of the field explorations.

We appreciate the opportunity to be of service. Please contact Loree Berry at 805-440-0966 or <u>Lberry@yeh-eng.com</u> if you have questions or require additional information.

Table of Contents

1. P	PURPOSE AND SCOPE OF WORK1
2. P	PROJECT UNDERSTANDING1
2.1	Proposed Project
2.2	Existing Site Description
2.3	SUMMARY OF PROJECT SEGMENTS
3. F	IELD EXPLORATION AND TESTING
3.1	Drilling
3.2	LABORATORY TESTING
3.3	GEOLOGIC SETTING
3.4	Subsurface Conditions
3.5	GROUNDWATER7
3.6	Select Fill Borrow Source – Rattlesnake Canyon
4. 0	GEOTECHNICAL RECOMMENDATIONS7
4.1	Design Concepts and Alternatives
4.2	GEOSYNTHETIC REINFORCED EMBANKMENT (SEGMENTS A AND E)8
4.3	Soldier Pile and Lagging Wall (Segments B and D)10
4.4	ANCHORED MESH
4.5	Rockfall Fencing
4.6	EROSION CONTROL MATTING AND RE-VEGETATION
4.7	SURFACE DRAINAGE IMPROVEMENTS
4.8	Existing Utilities and Drains
5. C	CORROSION TEST RESULTS
6. L	IMITATIONS
7. F	REFERENCES
	List of Plates
Field E	xploration PlanPlate 1

List of Figures

FIGURE 1: VICINITY MAP	1
Figure 2: Project Segments	3
FIGURE 3: GEOLOGIC MAP	5

FIGURE 4: GEOSYNTHETIC REINFORCED EMBANKMENT (GRE) CONCEPT
FIGURE 5: SOLDIER PILE WALL CONCEPT
FIGURE 6: EXAMPLE OF ANCHORED MESH SLOPE FACING PRIOR TO HYDROSEEDING
FIGURE 7: EXAMPLE OF TEMPORARY ROCKFALL FENCE CONSISTING OF A DEBRIS FENCE PANEL EMBEDDED INTO A CONCRETE BARRIER
(CREDIT: GEOBRUGG)

List of Tables

TABLE 1: SUMMARY OF PROJECT SEGMENTS	. 3
TABLE 2: GEOTECHNICAL PROPERTIES TEST SUMMARY	. 6
TABLE 3: GEOTECHNICAL PROPERTIES TEST SUMMARY (RATTLESNAKE CANYON BORROW SOURCE)	. 7
TABLE 4: SUMMARY OF RECOMMENDED MITIGATION STRATEGIES	. 8

List of Plate

List of Appendices

Page

Appendix A – Site Photographs	A-1 to 2
Appendix B – Boring Logs	
Legend for Symbols used on Borehole Logs	B-1 to 2
Boring Logs for 24B-01 to 05	B-3 to 9
Log of Borrow Site (Rattlesnake Canyon)	B-10
Appendix C – Results of Laboratory Testing	
Summary of Laboratory Testing	C-1
Atterberg Limits	C-2
Grain Size Distribution	
Sand Equivalent Value of Soils and Fine Aggregate	C-4
Proctor Compaction	C-5 to 6
Direct Shear Test	C-7 to 9
Unconfined Uniaxial Compressive Strength Test of Cut Rock Prisms	C-10
Corrosivity Test Summary	C-11

1. PURPOSE AND SCOPE OF WORK

Yeh and Associates was retained by Ventura County Public Works Agency (County) to provide geotechnical recommendations for the repair and restoration of an approximately 1/3-mile section of Matilija Canyon Road (MCR) in the Ojai area of Ventura County, California. The location of the site is shown on Figure 1.

The geotechnical evaluation consisted of project coordination, review of previous geotechnical data available for the project site, field exploration, laboratory testing, and preliminary engineering analyses as a basis for providing the recommendations in this report. This report provides preliminary alternative recommendations and management strategies to restore and protect a minimum 18-foot travel width of MCR, and corrosion data.

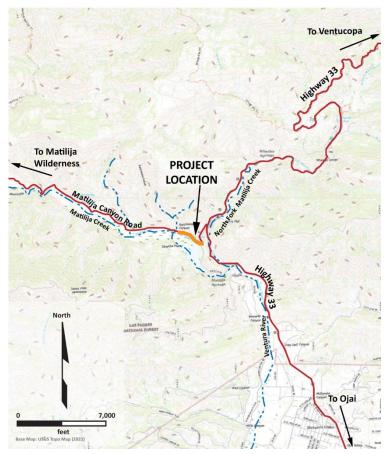


Figure 1: Vicinity Map

2. PROJECT UNDERSTANDING

MCR is a County maintained roadway that was constructed prior to 1947 and extends approximately 3.28 miles on the westerly side of State Highway 33. MCR services approximately 60 residences and ends in Los Padres National Forest wilderness. MCR is the only maintained roadway for the residents to reach the state highway and services. The maintained roadway width is 18 feet.

2.1 PROPOSED PROJECT

The County has requested that Yeh evaluate the site conditions and provides preliminary recommendations for mitigation alternatives to restore the roadway and management strategies to maintain it. This geotechnical report provides a description of and preliminary recommendations for the alternative options to improve the project alignment based on review of available geotechnical information and a limited geotechnical investigation. Final design of selected repair solutions may require additional exploration and testing, depending on the selected alternative and existing conditions at the time of final design.

The County is seeking FEMA emergency funding to finance the final design and construction for the project. The County will prepare plans to show site topography, drainage easements, and right of way.

2.2 EXISTING SITE DESCRIPTION

MCR was generally constructed by cutting into the hillside that extended from the existing ridgeline above MCR down to the northern bank of Matilija Creek. Segments of the existing road are also supported on previously placed fill built up from below the roadcut to create enough road width. The hillside cuts along the project segment generally resulted in "oversteepened" slope conditions that are typically prone to erosion, shallow slope instability, creep of fine-grained fill soil, and rockfall. Unstable areas within the fill slopes supporting MCR are generally related to deteriorated roads and associated adverse drainage conditions, poor fill placement and/or erosion of unvegetated rock faces. Two drain pipes are visible on the downhill slope with inlets along MCR. The County performs regular maintenance and repairs along MCR to mitigate and manage storm damage. The County's maintenance program generally maintains two lanes of traffic for an approximately 18-foot-wide roadway to allow emergency access. Storm damage that occurred during the winters of 2023 and 2024 has eroded portions of the project segment such that a relatively narrow single lane exists in some areas. Continued erosion without additional mitigation or management could result in the loss of road supported by the descending slopes below the road and the accumulation of eroded material and landslide debris from the ascending slope above the road, that may become unmanageable for the County. Slopes susceptible to erosion and slope instability associated with landsliding, particularly during relatively intense storm events or strong seismic events, could result in impacts to the roadway that impede safe and reliable vehicular access along MCR. Appendix A presents selected aerial photos and unmanned aerial survey (aka drone) photos showing representative conditions along the project.

2.3 SUMMARY OF PROJECT SEGMENTS

The project is divided into five segments for this report, designated A through E, for the purposes of describing the geologic conditions and recommendations for the project. Table 1 summarizes the topographic and geologic characteristics of each segment and a brief description of the types of erosion observed within that segment. Figure 3 shows an annotated drone photograph of the project alignment (facing north) that depicts those segments by color.

Condition ID	Approx. County MP	Description of Existing Erosion/Unstable Condition				
А	0.36 to 0.45	Several feet of outer shoulder/lane are undermined. Existing Fill slope. Roadway cracks show distress throughout the eastbound lane.				
В	0.45 to 0.49	Several feet of outer lane are undermined. Existing Cut Slope. Roadway cracks show distress throughout the eastbound lane. Travelable lane width reduced .				
с	0.49 to 0.55	Supported by steel crib wall on downslope side, construction date unknown. Less erosion than other segments, large void below the roadway (see Appendix A Photos)				
C*	0.55 to 0.57	Supported by steel crib wall on downslope side, construction date unknown. Erosion above the road is depositing material on inside shoulder and lane.				
D	0.57 to 0.60	Across natural drainage. Slope failure upslope and downslope of road. Area of concrete blocks visible below road and likely used for emergency fill repair.				
E	0.60 to 0.68	Erosion of upslope cut depositing material onto road. Area of concrete blocks visible below road and likely used for emergency fill repair. Undermining of road in areas.				

Table 1: Summary of Project Segments

Figure 2: Project Segments

3. FIELD EXPLORATION AND TESTING

A subsurface investigation consisting of hollow-stem auger and rock coring was conducted on May 5 and 6, 2024. The boring locations are shown on Plate 1. The logs of the borings are presented in Appendix B.

3.1 DRILLING

The drilling subcontractor for this project was 2R Drilling of Chino, California. 2R used a CME75 trackmounted drill rig equipped for hollow-stem auger and rock coring. Five borings were drilled to depths of approximately 15 to 30 feet below the ground surface on May 5 and 6, 2024. The borings 23B-01 to 23B-03 were drilled through the existing pavement structural section and borings 23B-04 and 23B-5 were drilled through the existing ground surface. The sides of the borehole were then scraped by the Yeh field geologist, and the thickness of the existing asphalt pavement was measured and recorded on the logs. Yeh personnel logged the subsurface conditions encountered during the drilling, secured soil and rock samples for subsequent laboratory testing. The samples intervals, a description of the subsurface conditions encountered, field tests, blow counts (N-values) recorded during drive sampling, and percent recovery are presented on the logs.

Sampling within the borings was performed by driving either a modified California or standard penetration test (SPT) split spoon sampler at typical 5-foot intervals. The SPT sampler has a 2-inch outside diameter, 1-3/8-inch inside diameter and is equipped for but was used without liners. The modified California sampler has a 3-inch outside diameter, 2-3/8-inch inside diameter and was used with 1-inch-high brass liners. Drive samples were collected using a 140-pound automatic trip hammer in accordance with ASTM D-1586 (the Standard Penetration Test) procedures. The hammer had an assumed efficiency of 80 percent. Bulk samples of the subgrade soil were collected from the augers at the depth intervals noted on the logs.

Continuous coring using the CME Continuous Sample Tube system was performed in rock encountered in 24B-01, 24B-02 and 24B-05 once drive sampling met practical refusal. The CME coring system was used to collect approximately 3-inch diameter disturbed core samples. Core was collected in typical 5-foot runs and recovered from the hole using a hex rod retriever system. Select samples for laboratory tests were taken from recovered core.

Upon completion, the borings were backfilled with approved native fill material collected from the auger cuttings and mixed with cement. Road patches consisted of hand-mixed rapid set concrete dyed black.

3.2 LABORATORY TESTING

Laboratory testing was performed on selected samples recovered from the field exploration program. Tests for moisture content, unit weight, particle size distribution by sieve analysis, Atterberg Limits, pH and resistivity were performed at our office and laboratory in Ventura, California. Laboratory tests for Proctor compaction, direct shear and unconfined uniaxial compressive strength test of rock were performed by the GEO-E lab at the Cal Poly Civil Engineering Department in San Luis Obispo, California. Sand equivalent testing was performed by Union Materials Testing (UMT) laboratory in

Oxnard, California. Tests for soluble sulfates, chlorides, and pH and resistivity were performed by Cooper Testing Laboratory in Palo Alto, California. The results of laboratory tests are presented in Appendix C. Testing was performed in accordance with ASTM and Caltrans test methods as noted on the lab reports. After the completion of the laboratory testing, the field descriptions were confirmed or modified as necessary on the boring logs.

3.3 GEOLOGIC SETTING

The project site is located within the western portion of the Topa Topa Mountains, in the Western Transverse Ranges Geomorphic Province (WTR) of California. The WTR province is characterized by east-west trending reverse-faults and compressional folds resulting from ongoing north-south transpression. Regional surface geology, as mapped by Tan and Jones (2006), is shown on Figure 2. The surface geology at the project location is mapped as early to middle Eocene age Juncal Formation

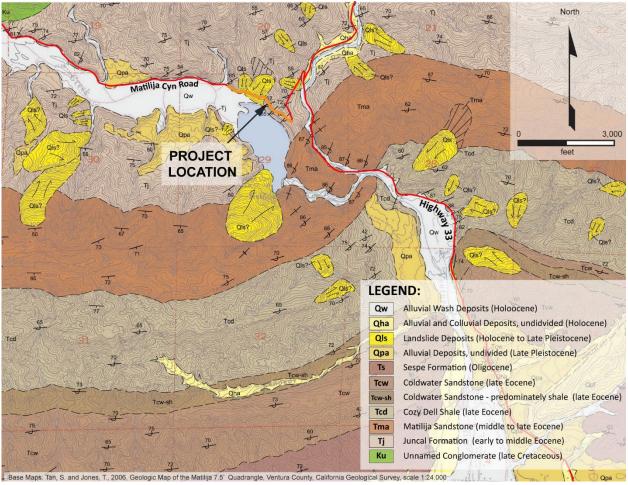


Figure 3: Geologic Map

(Tj) and described by Tan and Jones (2006) as: "micaceous shale with arkosic sandstone interbeds; generally susceptible to landsliding". Tan and Jones (2006) mapped Holocene to Late Pleistocene age landslide deposits along the western half of the project alignment.

3.4 SUBSURFACE CONDITIONS

The borings encountered two predominant units: existing artificial fill (Af) and Juncal Formation bedrock. The approximate locations of the borings are shown on Plate 1. Descriptions of the units encountered are summarized below.

Artificial Fill (Af). Artificial fill was encountered in borings 23B-01 to 23B-03 at the site. Approximately 3 to 6 inches of asphalt pavement was encountered in borings 23B-01 to 23B-03. The pavement materials were underlain by embankment fill that was encountered to depths of approximately 6 feet below the road surface. The embankment fill consisted of very dense to medium dense silty, clayey gravel with sand. Juncal formation bedrock was encountered below the artificial fill.

Juncal Formation (Tj). Sedimentary bedrock of the Juncal Formation was encountered in borings 24B-01 through 24B-05 to the maximum depths explored, approximately 15 to 30 feet below the road or ground surface. The rock generally consisted of decomposed to slightly weathered, soft to hard, intensely to very intensely fractured shale with some interbeds of siltstone and hard to very hard sandstone.

A summary of the laboratory test results for the two geologic units encountered is presented in Table 2 below:

Geologic Unit	Locations	Dry Unit Wt. (pcf) and Moisture	Particle Size Analyses	Atterberg Limits	Corrosion	Strength Parameters	Other
Artificial Fill (Af)	23B-01 23B-02 23B-03	γ _d : 109 w _o : 8%	43-80% G 6-30% S 14-18% F	22 LL 6 PI	pH = 7.58-7.87 ρ = 2001-2989 Ω-cm SO4 ²⁻ = 13-29 mg/kg Cl ⁻ = <2 mg/kg	ϕ'_{ds} = 43° c' _{ds} = 0 ksf (remolded)	γ _{d, MAX} : 131 W _{opt} : 12%
Juncal Formation (Tj) - Shale	23B-01 to 05	γ _d : 113 w _o : 6%	28% G 58% S 15% F		pH = 7.68 ρ = 1730 Ω-cm SO4 ²⁻ = 25 mg/kg Cl ⁻ = <2 mg/kg	$\phi'_{ds} = 43^{\circ}$ c' _{ds} = 0.2 -0.3 ksf (remolded)	γ _{d, MAX} : 134 W _{opt} : 12%
Juncal Formation (Tj)	Loose Boulder					UC = 11.7-14.8 ksi	γ _{d, Total} : 151-158

¹ Geotechnical properties are noted for dry unit weight (γ_d);moisture content (w_o); Maximum Dry Unit Weight ($\gamma_{d, MAX}$); Optimum Water Content (w_{opt}); particle size as percent gravel (G), sand size (S) and fines content (F); electrical resistivity (ρ) in ohm-centimeters (Ω -cm), soluble sulfates (SO₄²⁻), soluble chlorides (Cl⁻), Atterberg liquid limit (LL) and plasticity index (PI); friction angle (ϕ) or cohesion (c) in kips per square foot measured from direct shear (ds) in kip per square inch (ksi), unconfined uniaxial compression (UC) in kips per square inch, Sand Equivalent Value (SE)

Geologic Unit	Locations	Dry Unit Wt. (pcf) and Moisture	Particle Size Analyses	Atterberg Limits	Corrosion	Strength Parameters	Other
– Sandstone Boulder							

3.5 GROUNDWATER

Groundwater was not encountered in the borings to the maximum depths explored (approximately 30 feet below the ground surface) during the May 2024 field exploration program. The water surface elevation of the flow in Matilija Creek was approximately 1,100 feet along the project alignment in May 2024 (Ventura County Topography, June 7, 2024). We did not observe springs on the slopes during the field investigation. Water levels and soil moisture conditions will vary seasonally and in association with changes in precipitation, runoff, and other factors.

3.6 SELECT FILL BORROW SOURCE - RATTLESNAKE CANYON

A composite bulk sample was collected on the north side of MCR at Rattlesnake Canyon, as shown on Plate 1. The bulk sample consisted of alluvial soil and talus derived from the Juncal Formation exposed upslope. The material was collected from within an alluvial fan of sediment that is deposited at the bottom of the Rattlesnake Canyon drainage, approximately 400 feet west of the project alignment. Laboratory testing was performed on a the composite bulk sample to evaluate the potential borrow site's suitability as a fill source for reinforced embankment fill.

Geologic Unit	Locations	Dry Unit Wt. (pcf) and Moisture	Particle Size Analyses	Atterberg Limits	Corrosion	Strength Parameters	Other
Borrow Source (Rattlesnake Canyon)	Composit e Bulk (0- 3')		52% G 35% S 5% F		pH = 7.62 ρ = 1540 Ω-cm SO ₄ ²⁻ = 92 mg/kg Cl ⁻ = <2 mg/kg	$\phi'_{ds} = 43^{\circ}$ c' _{ds} = 0.3 ksf (remolded)	γ _{d, MAX} : 127 W _{opt} : 11% SE: 63

Table 3: Geotechnical Properties Test Summary (Rattlesnake Canyon Borrow Source)

4. GEOTECHNICAL RECOMMENDATIONS

4.1 DESIGN CONCEPTS AND ALTERNATIVES

Yeh submitted a Preliminary Geotechnical Memorandum, dated June 24, 2024, that provided a summary of the site conditions and considerations for design alternatives along the project. Table 4 provides a summary of the anticipated mitigation strategies for each project segment based on the results of our field exploration program and discussions with the County. Descriptions and typical details for the alternatives are described below. Right of way limits shown on the figures below are estimated based on our review of the County's 2023 and 2024 project specific topography, site

observations, and the requirement to a minimum road width of 18 feet. The improvements shown are conceptual and should be considered an example of a typical section for the proposed alternative.

These concepts are intended to repair, stabilize, and protect the existing roadway on its current alignment to establish a minimum road and shoulder width and reduce the potential for further erosion, creep, shallow slope instability, or rockfall. An avoidance strategy that typically consists of re-aligning the roadway to reduce the potential for geologic hazard impacts was not considered practical for the project. The alternatives presented are based on our experience and past road and highway projects where roadways have been impacted by similar conditions. It may be that a combination, modification, or alternative to those discussed is selected for design for reasons of cost, environmental impacts, right of way, scheduling or other design considerations. Yeh can evaluate other alternatives or provide additional evaluation of these alternatives for the project, if requested.

Segment	Avoid	Stabilize	Protect – ascending slope	Protect – descending slope	Manage
A	n/a	Geosynthetic Reinforced Embankment (GRE)	Anchored mesh	Erosion control matting/re- vegetation	Rigid barrier with rockfall fencing
В	n/a	Soldier Pile and Lagging Wall	Anchored mesh	Anchored mesh	Rigid barrier with rockfall fencing
С	n/a	Repair void below pavement	Anchored mesh	Erosion control matting/re- vegetation	Rigid barrier with rockfall fencing
C*	n/a	n/a	Anchored mesh	Erosion control matting/re- vegetation	Rigid barrier with rockfall fencing
D	n/a	Soldier Pile and Lagging Wall	n/a	Erosion control matting/re- vegetation	Rigid barrier with rockfall fencing
E	n/a	Geosynthetic Reinforced Embankment (GRE)	n/a	Erosion control matting/re- vegetation	Rigid barrier with rockfall fencing

Table 4: Summary of Recommended Mitigation Strategies

4.2 GEOSYNTHETIC REINFORCED EMBANKMENT (SEGMENTS A AND E)

A geosynthetic reinforced embankment (GRE) is recommended along the eastbound side of the existing roadway for Segments A and E to restore the fill slope supporting the road and shoulder. Figure 4 presents a concept for a geosynthetic reinforced embankment relative to the existing slope cross section through Segment A. Construction of the GRE would include removal of the existing embankment material that is susceptible to creep-type movement and underlying soil susceptible to erosion and slope instability associated with landsliding.

The GRE embankment would be constructed on a firm or stable base within the existing fill or Juncal Formation bedrock. The new slope would be reconstructed using a non-plastic import fill with geosynthetic reinforcement and subsurface drainage to improve slope stability and reduce the potential for post-construction creep of the embankment. The excavation should remove at least the outer 6 feet from the slope face. Geogrid reinforcement is typically placed in layers extending a minimum of 5 feet from the slope face to reduce the potential for surficial instability. Additionally, the finished slope face should be covered with a minimum 3-year-life erosion control matting and should be planted with plants and/or grasses that have deep rooting and will help resist surface erosion. The embankment can be designed to conform to existing slopes. The geosynthetic reinforced embankment backfill should be drained as shown on Figure 4 and connected to an outlet that drains downslope of the GRE.

The GRE solution is typically the least expensive alternative of those presented in this report; however, construction of a GRE is an earthwork operation that typically involves ramping down into the area of the excavation limits shown in Figure 4. The construction typically requires 24-hour closure of the work area that includes at least the existing shoulder and a portion of the eastbound

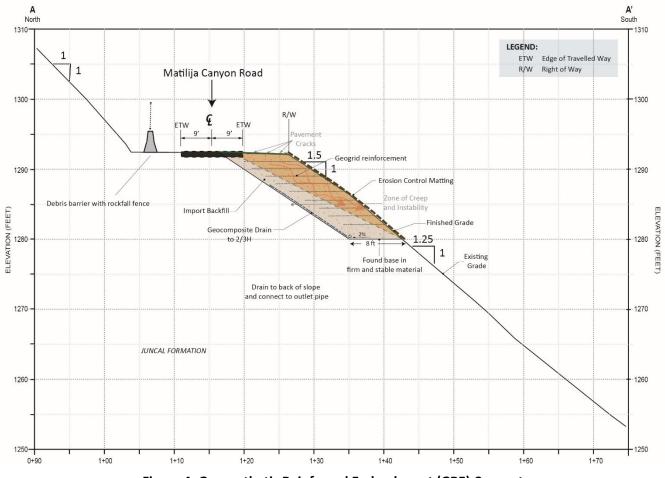


Figure 4: Geosynthetic Reinforced Embankment (GRE) Concept

lane for the duration of construction (likely on the order of 15 to 30 working days). The exact limits of the excavation will vary based on existing right of way width, the estimated depth of unstable material, and slope stability analyses to estimate reinforcement length, spacing, and strength that should be performed for design of the improvements.

4.3 SOLDIER PILE AND LAGGING WALL (SEGMENTS B AND D)

An unanchored, soldier pile and lagging retaining wall could be designed along the eastbound side of the existing roadway to restore the slope along Segments B and D. Figure 5 presents a concept for the soldier pile wall relative to the existing slope cross section through Segment B. Construction of the soldier pile wall would consist of top-down construction methods that would support the roadway during construction. Construction would include drilling vertical holes along the shoulder or eastbound lane (typically 6 to 8 feet on center), placing steel H-piles in the holes, backfilling the holes with concrete, and excavating the outer portion of the slope from the top down to place lagging between the H-piles. Treated timber lagging is typically used as lagging elements; however, concrete

lagging elements could also be used to provide additional fire resistance. Alternatively, reinforced formed concrete or shotcrete could be used to face the timber lagging.

Geocomposite drain strips should be placed behind the lagging and connected to an outlet pipe that drains downslope of the wall. A guardrail could also be incorporated in this alternative. The soldier

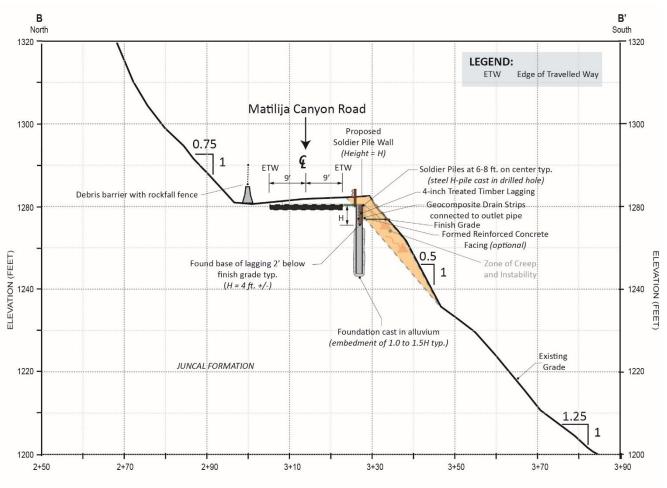


Figure 5: Soldier Pile Wall Concept

pile wall alternative is typically more expensive than a geosynthetic reinforced embankment ; however, the soldier pile wall would not require a 24-hour lane closure for the eastbound lane of MCR. The road could be open to traffic outside of working hours. This alternative would also reduce the required amount of excavation and import material compared to the GRE alternative. Soldier pile wall construction would likely result in less potential impacts to the existing utilities and existing drainpipes. A portion of the eastbound side of the road would be needed for construction access.

4.4 ANCHORED MESH

Anchored mesh slope facing is proposed to reduce erosion and maintenance associated with the cut slopes upslope of MCR that deposit slide debris and rockfall on the road along most of the project alignment. Anchored mesh is also recommended below the soldier pile wall along Segment B, where unvegetated bedrock is exposed below MCR.

Anchored wire mesh is a flexible slope facing that provides passive slope stabilization. The mesh typically improves surficial stability and reduces the potential for erosion. The mesh system consists of steel wire mesh anchored to the slope using ground anchors, erosion control matting placed beneath the wire mesh, and seeding. Anchor plates are secured to the mesh at the head of the ground anchors. Figure 6 shows a newly installed anchored mesh system prior to hydroseeding. Loose and unstable soil is removed, and existing vegetation pruned before placing the mesh.

Figure 6: Example of Anchored mesh slope facing prior to hydroseeding

The most effective system will have

maximum contact between the ground and mesh. That ground contact is established with gravity grouted ground anchors that extend beyond the weathered outer zone of the slope and are embedded within competent material.

4.5 ROCKFALL FENCING

Rockfall consisting of sliding talus and rolling or bouncing cobbles and boulders is common upslope of MCR. The County typically maintains this condition by removing rockfall debris from the roadway and by placing rigid concrete barriers (i.e. K-rail) in some areas along the westbound shoulder. Rockfall fencing is recommended along the westbound shoulder of the project alignment to reduce

the potential for rockfall to impact the roadway and facilitate the County's management program, which would likely consist of periodic removal of debris that will accumulate behind the barrier, particularly following relatively intense storm events.

There are a wide variety of rigid and flexible rockfall fencing systems available and commonly used along transportation corridors. It is anticipated that the County prefers to utilize a rigid barrier system due to cost and ease to replace, when damaged. A flexible rockfall fence embedded in the barrier would add height to the system and would likely result in less impacts associated with rockfall and lower long-term roadway maintenance costs. The barrier should be set back from the toe of the slope, if possible, to provide a rockfall

Figure 7: Example of temporary rockfall fence consisting of a debris fence panel embedded into a concrete barrier (credit: Geobrugg)

catchment and clean out area. Figure 7 shows an example of a common temporary rockfall barrier system consisting of both a rigid barrier and flexible rockfall fence.

4.6 EROSION CONTROL MATTING AND RE-VEGETATION

Erosion control matting and seeding is recommended to re-establish vegetation along unvegetated soil slopes and newly graded cut or GRE fill slopes to reduce the potential for surface erosion.

4.7 SURFACE DRAINAGE IMPROVEMENTS

Final design of the project improvements should include a review of the current surface drainage, and measures for improved drainage provisions on MCR that will reduce the potential for stormwater to overtop the existing shoulder berms or runoff on the slopes below the road. Additional geotechnical evaluation will be needed to develop recommendations for design.

4.8 EXISTING UTILITIES AND DRAINS

Existing water, gas, and communication utility lines may be present along the project alignment. Additionally, buried storm drainpipes cross MCR, roughly perpendicular to the project alignment. Design of the final selected alternatives will need to consider the presence of and potential impacts to the existing utilities and buried drainpipes.

5. CORROSION TEST RESULTS

Selected samples from the field exploration programs were tested for pH, resistivity, soluble sulfates and soluble chlorides. Results are presented in Appendix C. The results of the testing of four soil samples collected from the borings at depths ranging from approximately 0 to 5 feet below the ground surface are summarized as follows:

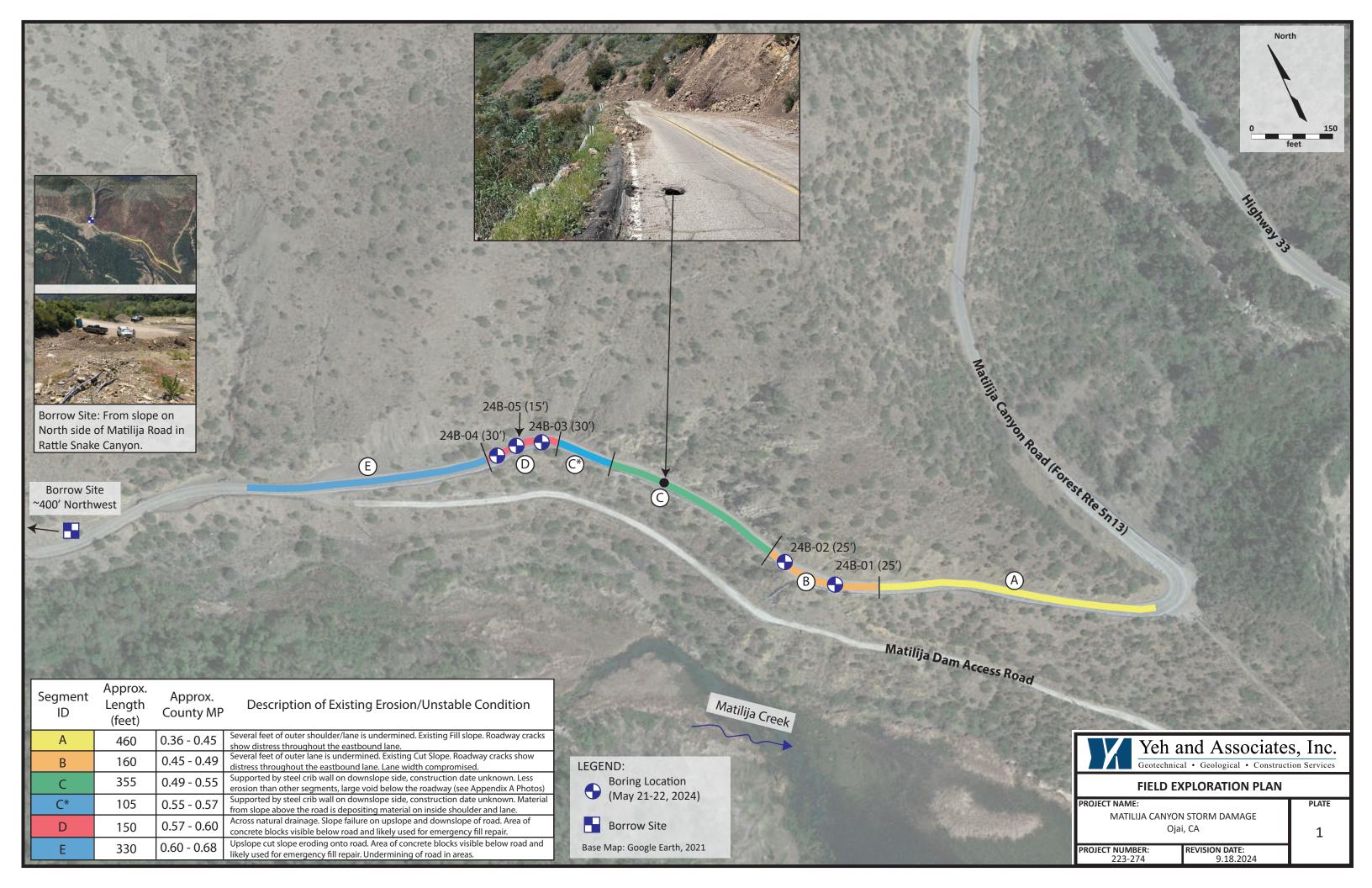
- pH: 7.58 to 7.87
- Resistivity: 1,540 to 2,989 ohm-centimeters
- Soluble sulfates: 13 to 92 ppm
- Soluble chlorides: <2 ppm

Caltrans Amendments (2019) state that "a site is considered to be corrosive if one or more of the following conditions exist for the representative soil and/or water samples taken at the site: chloride concentration is 500 ppm or greater, sulfate concentration is 1,500 ppm or greater, or the pH is 5.5 or less." The Caltrans Amendments (2019) also state that "soil, water, or site conditions that have a minimum resistivity equal or less than 1,100 ohm-cm shall be considered as indicators of potential pile corrosion or deterioration." Based on Caltrans test methods and standards, the soil samples tested are not considered corrosive towards concrete. Final design of the project should consider corrosivity test results using appropriate design standards Caltrans and the California Building Code.

6. LIMITATIONS

Yeh prepared this report for <CLIENT> and their authorized agents only. It is not intended to address issues or conditions pertinent to other parties, projects or for other uses. This report is for preliminary planning purposes only and is not intended for use in final design or construction. The results of this study are preliminary and subject to change pending the results of our design-level field exploration and geotechnical evaluation. No services have been performed to evaluate environmental impacts, or the presence of hazardous or toxic materials.

Site conditions will vary between points of observation or sampling, seasonally, and with time. The nature and extent of subsurface variations across the site may not become evident until excavation is performed. If during construction, fill, soil, or water conditions appear to be different from those



described herein, Yeh should be advised and provided the opportunity to evaluate those conditions and provide additional recommendations, if necessary.

7. REFERENCES

- California Department of Transportation (Caltrans 2019). *California Amendments to the AASHTO LRFD Bridge Design Specifications, Eighth Edition,* Sacramento, California, issued April 2019.
- County of Ventura Public Works Agency, Road Department. (1979), *Flood Damage Restoration Matilija Canyon Road*, From Mile Post 0.28 to Mile Post 4.3, Project No. 5815, Specification No. RD 80-5, dated July 6, 1979.
- County of Ventura Public Works Agency Matilija Canyon Road Topography received (February 28 and June 7, 2024)
- Environmental Data Research, Inc. (EDR 2024), *The EDR Aerial Photo Decade Package, Matilija Canyon Road*, EDR Inquiry No. 7599777.1, dated March 20, 2024.
- Environmental Data Research, Inc. (EDR 2024), *The EDR Aerial Photo Decade Package, Matilija Canyon Road 2*, EDR Inquiry No. 7599790.1, dated March 20, 2024.
- Tan, S. and T. Jones (2006), Geologic Map of the Matilija 7.5' Quadrangle, Ventura County, California: A Digital Database, version 1.0.
- U.S. Department of Transportation, Federal Highway Administration, *Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects FP-14*, U.S.
- United States Geological Society (2018), Topographic Map of Matilija Quadrangle, 1:24,000, 7.5-Minute Series, Ventura County, California
- Yeh and Associates, Inc. (2024), Geotechnical Memorandum, Preliminary Geotechnical Recommendations, Matilija Canyon Road Storm Damage, Approximate Mile Post 0.3 to 0.7, Ojai, CA, dated June 24.

APPENDIX A - SITE PHOTOGRAPHS

Matilija Canyon Road 1947 Aerial Photo

Matilija Canyon Road ~MP 0.5 to 0.7 facing northeasterly

Matilija Canyon Road ~MP 0.3 to 0.5 facing northeasterly

Matilija Canyon Road from ~MP 0.6 looking southeast

Matilija Canyon Road from ~MP 0.3 looking northwest

Undermined Matilija Canyon Road ~MP 0.42

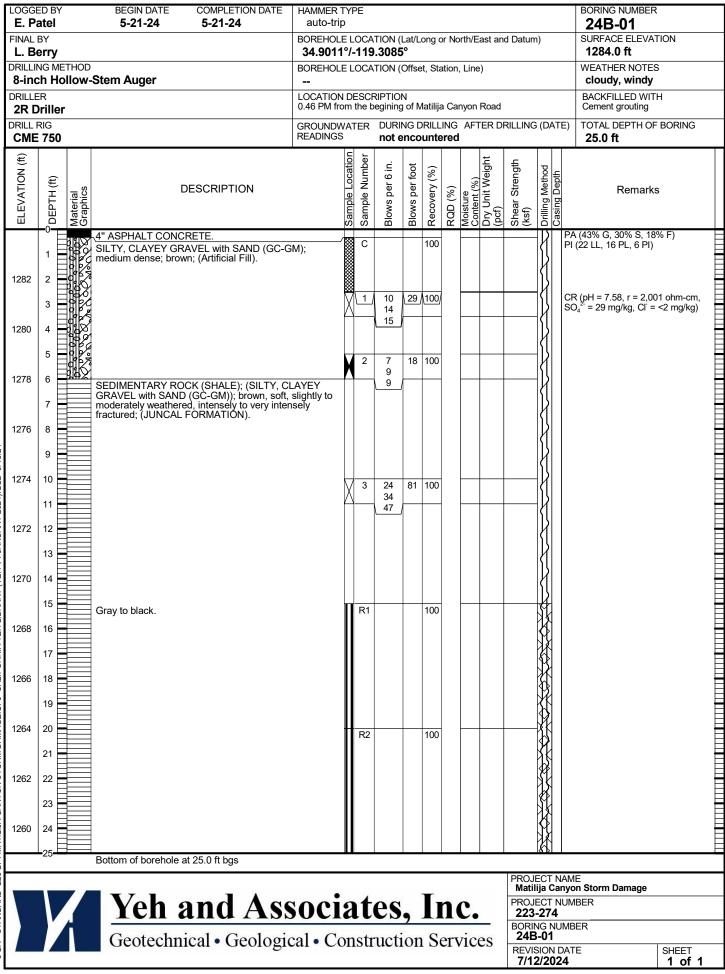
Undermined Matilija Canyon Road ~MP 0.42

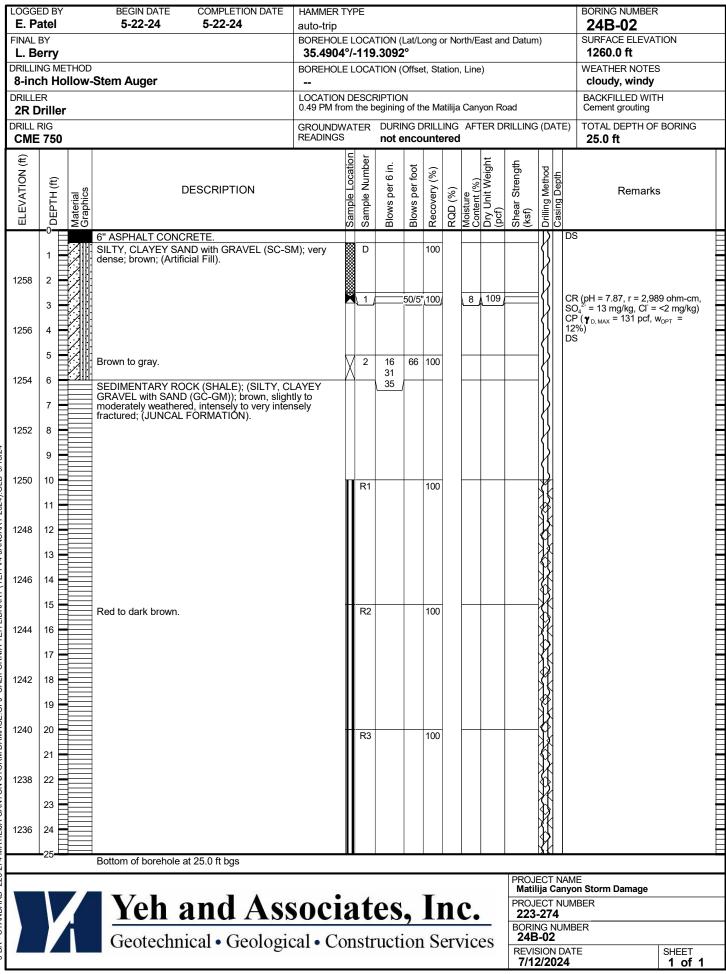
Existing Void, Matilija Canyon Road ~MP 0.53

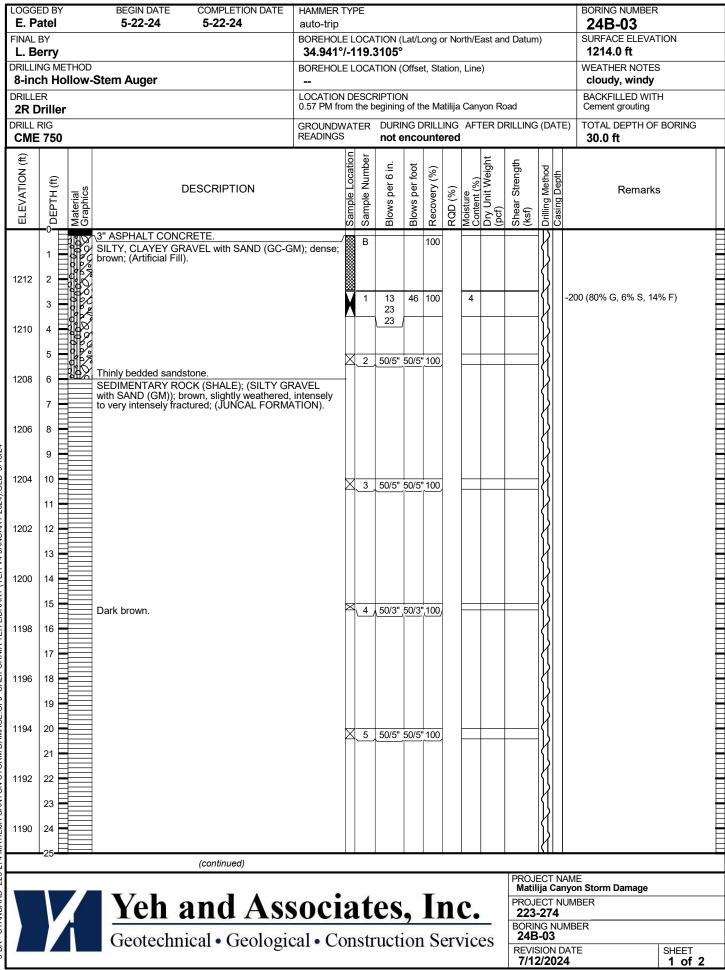
Existing Void with 5/21/24 Measurements , Matilija Canyon Road ~MP 0.53

Undermined Matilija Canyon Road and Erosion and Rockfall from above, ~MP 0.58

Undermined Matilija Canyon Road ~MP 0.63, looking up from lower access road

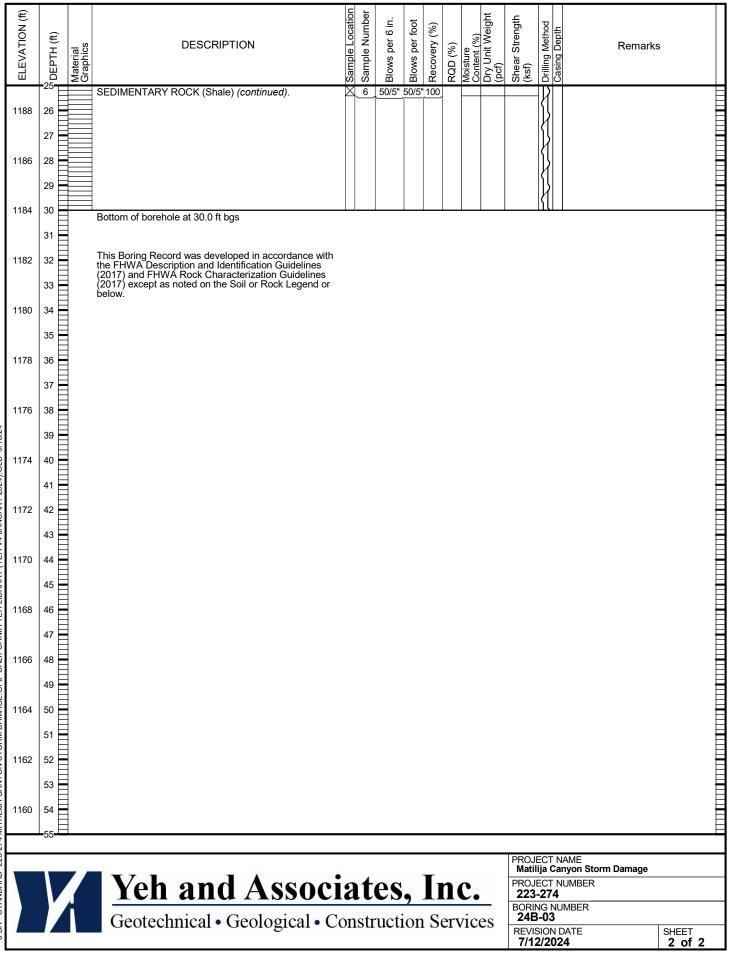

APPENDIX B - BORING LOGS

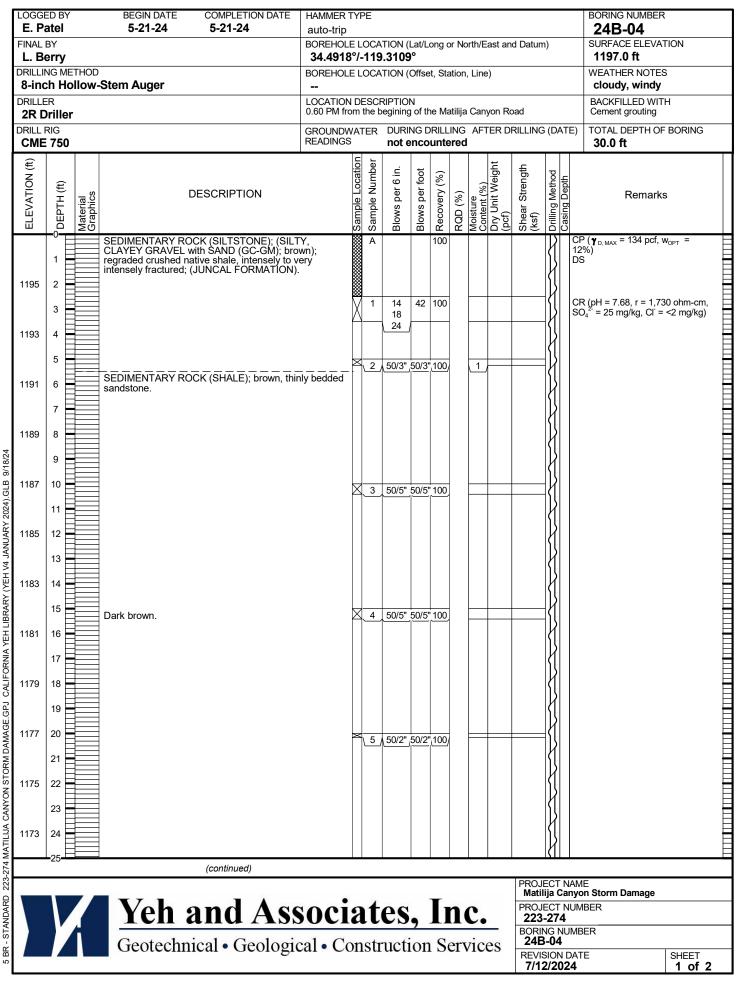

Appendix Secure times Composition international control internation control internatinte control internation contrenation control internation			GROUP SYMBC	LS AN		IES	FIE	LD AND LABORATORY TESTS
	ohic / Sy	ymbol	Group Names	Graphic	c / Symbol	Group Names	C Co	onsolidation (ASTM D2435)
0 Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD Constrained DMDE and BAD 0 Constrained DMDE and BAD Constre BAD Constrained DMDE and B		GW	Well-graded GRAVEL with SAND		CL	Lean CLAY with SAND Lean CLAY with GRAVEL SANDY lean CLAY	CP Co CR Co	ompaction Curve (ASTM D1557) orrosion, Sulfates, Chlorides (CTM 643; ASTM
Or even West gassed solvey		GP				GRAVELLY lean CLAY		,
Normality (MARCH CAAL IF BUTY CAAT) Additional Coal Coal Coal Coal Coal Coal Coal Co	GV	N-GM	-			SILTY CLAY with SAND		
 Produge and BOME in the SLT and BAD Produge and BADE in the SLT and BADE Produge and BADE in the SLT and CALVER Produge and BADE in the CALVER Produge and BADE in the SLT and CALVER Produge and BADE in the CALVER in the CALVER Produge and BADE in the CALVER in the CALVER<	GV	w-gc	Well-graded GRAVEL with CLAY (or SILTY CLAY) Well-graded GRAVEL with CLAY and SAND		CL-ML	SANDY SILTY CLAY SANDY SILTY CLAY with GRAVEL GRAVELLY SILTY CLAY	P Pe	ermeability (ASTM 5084)
Image: Section of the section of t	GF	P-GM	Poorly graded GRAVEL with SILT			SILT SILT with SAND	(A	STM D4318)
Image: Serie (Section Classes Section Classes Section Classes Section Classes Section	G GF	P-GC	Poorly graded GRAVEL with CLAY (or SILTY CLAY)		ML	SANDY SILT SANDY SILT with GRAVEL GRAVELLY SILT	PP Po	ocket Penetrometer
CLAYEY GRAVEL SMOTO DISAUCIES ALCAY IN GRAVEL GC CH CLAYEY GRAVEL GRAVEL STAND GC CH SLTY, CLAYEY GRAVEL GRAVEL STAND GV CH SLTY, CLAYEY GRAVEL GRAVEL ST STAND GV CH SLTY, CLAYE GRAVEL GRAVEL ST STAND GV CH SLTY, CLAYE GRAVEL GRAVEL ST STAND GV CH SLTY, CLAYE GRAVEL GRAVEL ST STAND GV CH SLTY SLTY CLAY GRAVEL ST STAND GV CH SLTY SLTY CLAY GRAVEL ST STAND GV CH SLTY SLTY CLAYER GRAVEL GRAVEL ST STAND GRAVEL ST STAND GRAVEL ST STAND GRAVEL ST STAND GRAVEL ST STAND ST ST SLTY CLAYER GRAVEL GRAVEL ST STAND GRAVEL ST STAND GRAVEL ST STAND <td< td=""><td></td><td>GM</td><td>SILTY GRAVEL</td><td></td><td></td><td>ORGANIC lean CLAY ORGANIC lean CLAY with SAND ORGANIC lean CLAY with GRAVEL</td><td>SE Sa</td><td>and Equivalent (CTM 217)</td></td<>		GM	SILTY GRAVEL			ORGANIC lean CLAY ORGANIC lean CLAY with SAND ORGANIC lean CLAY with GRAVEL	SE Sa	and Equivalent (CTM 217)
B:: TY: CLAYEY GRAVE. OPENAND: SIX TY: CLAYEY GRAVE. <td< td=""><td></td><td>GC</td><td></td><td></td><td></td><td>SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAND</td><td>UC Un</td><td>nconfined Compression - Soil (ASTM D2166)</td></td<>		GC				SANDY ORGANIC lean CLAY with GRAVEL GRAVELLY ORGANIC lean CLAY GRAVELLY ORGANIC lean CLAY with SAND	UC Un	nconfined Compression - Soil (ASTM D2166)
isw Weingested SMD Sector ORCARGE ST Wein GRAVEL isw Weingested SMD wind GRAVEL GRAVELLY ORCANCE ST Wein GRAVEL isw GRAVELLY ORCANCE ST Weingested SMD isw GRAVELLY ORCANCE ST WEINGEST isw GRAVELLY ORCANCE SOLUTION SOLUTIO	GC	C-GM			OL	ORGANIC SILT with SAND ORGANIC SILT with GRAVEL	UU Un (As	nconsolidated Undrained Triaxial STM D2850)
9 Perty grades SMD Perty grades SMD with SUT 90 Perty graded SMD with SUT Pert CA.With SMPRE, SMPC Via CLAV with SMPRE, SMPC Via CLAV with SMPC (CAV with SMPC) 90 SW-SW Weil graded SMD with SUT and GRAVEL (V SUTY CLAV with SMD Via CLAV vin SMPC) 90 SW-SW Weil graded SMD with SUT and GRAVEL (V SUTY CLAV with SMD Via CLAV vin SMD Via CRAVEL vin SMD Via CRAVEL vin SMD Via CLAV vin SMD Via CRAVEL Via SMD Via CRAVEL Via SMD Via CRAVEL Via SMD Via SMD Via CRAVEL Via SMD V	۰ ۱	sw	-	$\left \left\langle \right\rangle \right\rangle$		SANDY ORGANIC SILT with GRAVEL GRAVELLY ORGANIC SILT	VS Va	ane Shear (AASHTO T 223-96 [2004])
Image: Sint-Sint Weil-graded SAND with SLT of GRAVEL SNAP (Lift (LAX with GRAVEL) Sint-Sint Weil-graded SAND with SLT of GRAVEL GRAVELLY (LAX with GRAVEL Sint-Sint Weil-graded SAND with SLT GRAVELLY (LAX with GRAVEL) Sint-Sint Weil-graded SAND with SLT of GRAVEL Mith Sint-Sint Weil-graded SAND with SLT Mith Sint-Sint Weil-graded SAND with CLAY with GRAVEL Mith Sint-Sint Weil-graded SAND with CLAY with GRAVEL Mith Sint-Sint Weil-graded SAND with GRAVEL Mith Sint Sint Weil-graded SAND with GRAVEL Mith Sint Sint Weil-graded SAND with GRAVEL Mith Sint Sint Weil-graded SAND with GRAVEL Mith Sint Weil-graded SAND with GRAVEL Mith Sint Sint Weil-graded SAND with GRAVEL Mith	· · •	SP			СН	Fat CLAY with SAND Fat CLAY with GRAVEL	200 20	
SW-SC Weighted solution and call (GAU) (GAU) SW-SC Weighted SWD Call (GAU)	sv	N-SM	-			SANDY fat CLAY with GRAVEL GRAVELLY fat CLAY		
SP-SM Poorly graded SAND with SLT and GRAVEL GRAVELLY diade. SLT GRAVELLY diade. SLT SP-SC Poorly graded SAND with CLAY (or SLTY CLAY) ORGANIC fat CLAY with SAND Standard Penetration Test (SPT) (2" O.D.) SN SLTY CLAY and GRAVEL ORGANIC fat CLAY with SAND Standard Penetration Test (SPT) (2" O.D.) SN SLTY SAND SLTY SAND GRAVEL ORGANIC fat CLAY with SAND Sc CLAYEY SAND GRAVEL ORGANIC fat CLAY with SAND Modified California Sampler (2.5" O.D.) Sc CLAYEY SAND GRAVEL ORGANIC fat CLAY with SAND Modified California Sampler (3" O.D.) Sc CLAYEY SAND GRAVEL ORGANIC fat CLAY with SAND Modified California Sampler (3" O.D.) Sc CLAYEY SAND GRAVEL ORGANIC fat CLAY with SAND Modified California Sampler (3" O.D.) Sc CLAYEY SAND with GRAVEL ORGANIC fat CLAY with SAND Modified California Sampler (3" O.D.) Sc CLAYEY SAND with GRAVEL ORGANIC fat CLAY with SAND Modified California Sampler (3" O.D.) Sc Sc Standard California Sampler (3" O.D.) GRAVELLY ORGANIC fat CLAY with SAND Modified California Sampler (3" O.D.) Sc Standard California Sampler (3"			Well-graded SAND with CLAY and GRAVEL (or SILTY CLAY and GRAVEL)		мн	Elastic SILT with SAND Elastic SILT with GRAVEL SANDY elastic SILT	S/	AMPLER GRAPHIC SYMBOLS
SP-SC Porty provide SNUD with CLAY with SAND OPCAMUC fail CLAY with SAND SM SLTY SAND SLTY SAND SLTY SAND SLTY SAND SC CLAYEY SAND with GRAVEL SC CLAYEY SAND SC-SM SLTY, CLAYEY SAND SLTY, CLAYEY SAND OPCAMUC elastic SLT with SAND ORGANIC clastic SLT with GRAVEL OPCAMUC elastic SLT with GRAVEL SC-SM SLTY, CLAYEY SAND with GRAVEL OPCAMUC elastic SLT with GRAVEL SC-SM SLTY, CLAYEY SAND with GRAVEL OPCAMUC elastic SLT with GRAVEL GRAVELLY ORGANIC elastic SLT with GRAVEL GRAVELLY ORGANIC elastic SLT with GRAVEL GRAVELLY ORGANIC elastic SLT with GRAVEL GRAVELLY ORGANIC elastic SLT with GRAVEL GRAVELLY ORGANIC elastic SLT with GRAVEL GRAVELLY ORGANIC elastic SLT with GRAVEL GRAVELLY ORGANIC elastic SUT with GRAVEL GRAVELLY ORGANIC elastic SUT with GRAVEL GRAVELLY ORGANIC elastic SUT with GRAVEL GRAVEL		-				GRAVELLY elastic SILT with SAND ORGANIC fat CLAY	∐ s	tandard Penetration Test (SPT) (2" O.D.)
SILTY SAND with GRAVEL GRAVELLY ORGANIC fait CLAY with SAND Sc CLAYEY SAND GRAAUC elatids SILT Sc GLAYEY SAND GRAAUC elatids SILT with GRAVEL Sc GRAAUC elatids SILT with GRAVEL GRAAUC elatids SILT with GRAVEL Sc SILTY, CLAYEY SAND GRAAUC elatids SILT with GRAVEL Find GRAVEL Sc SILTY, CLAYEY SAND GRAAUC elatids SILT with GRAVEL Find GRAVEL Sc SILTY, CLAYEY SAND with GRAVEL GRAAUC elatids SILT with GRAVEL Find GRAVEL Sc SILTY, CLAYEY SAND with GRAVEL GRAWELY ORGANIC Solt with SAND Find GRAVEL Mager Drilling GRAWEL ORGANIC Solt with SAND GRAWELY ORGANIC Solt with SAND Grab Sample Mager Drilling Rotary Drilling Dynamic Cone or Hand Driven Diamond Core WATER LEVEL SYMBOLS Static Water Level Reading (during drilling) Static Water Level Reading (during drilling) Static Water Level Reading (long-term) Static Water Level Reading (long-term) Static Water Level Reading (long-term) Static Water Level Reading (long-term)		-	SILTY SAND		ОН	ORGANIC fat CLAY with GRAVEL SANDY ORGANIC fat CLAY SANDY ORGANIC fat CLAY with GRAVEL	s s	tandard California Sampler (2.5" O.D.)
Image: Section of the section of th			CLAYEY SAND		-	GRAVELLY ORGANIC fat CLAY with SAND ORGANIC elastic SILT ORGANIC elastic SILT with SAND		lodified California Sampler (3" O.D.)
Image: Comparison of the control of	sc	с-ѕм	SILTY, CLAYEY SAND		он	SANDY elastic ELASTIC SILT SANDY ORGANIC elastic SILT with GRAVEL GRAVELLY ORGANIC elastic SILT	∏ ∏ ∓	hin-Walled III Piston Sampler
COBBLES COBBLES and BOULDERS SANDY ORGANIC SOLL with GRAVEL GRAVICLY ORGANIC SOLL With GRAVEL GRAVICLY ORGANIC SOLL With SAND Bulk Sample Other (see remarks DRILLING METHOD SYMBOLS Image: Comparison of the comp	전 전 전문 전문 전문	РТ		רי אריין רי ארי אריין אי אי אי		ORGANIC SOIL ORGANIC SOIL with SAND ORGANIC SOIL with GRAVEL	R	ock Core Grab Sample
Auger Drilling	Ž J		COBBLES and BOULDERS	ר אר אין האר אר האר אר	OL/OH	SANDY ORGANIC SOIL with GRAVEL GRAVELLY ORGANIC SOIL	В	ulk Sample Other (see remarks
Auger Drilling Auger Drilling Pontand Driven Dynamic Cone of Hand Driven Diamond Core Static Water Level Reading (short-term) Static Water Level Reading (long-term) Static Water Level Reading (long-term) Static Water Level Reading (long-term) Project NAME Matilija Canyon Storm Damage			DRILLING MET	HOD	SYMB	OLS		WATER LEVEL SYMBOLS
Yeh and Associates, Inc. REPORT TITLE LEGEND FOR SOIL CLASSIFICAT PROJECT NAME Matilija Canyon Storm Damage	<u>}</u>	Auger	Drilling Rotary Drilling	E c	Dynamic or Hand	Cone Diamond Core	⊥ ⊈ Sta	tic Water Level Reading (short-term)
Yeh and Associates, Inc. PROJECT NAME Matilija Canyon Storm Damage							-	
							-	PROJECT NAME

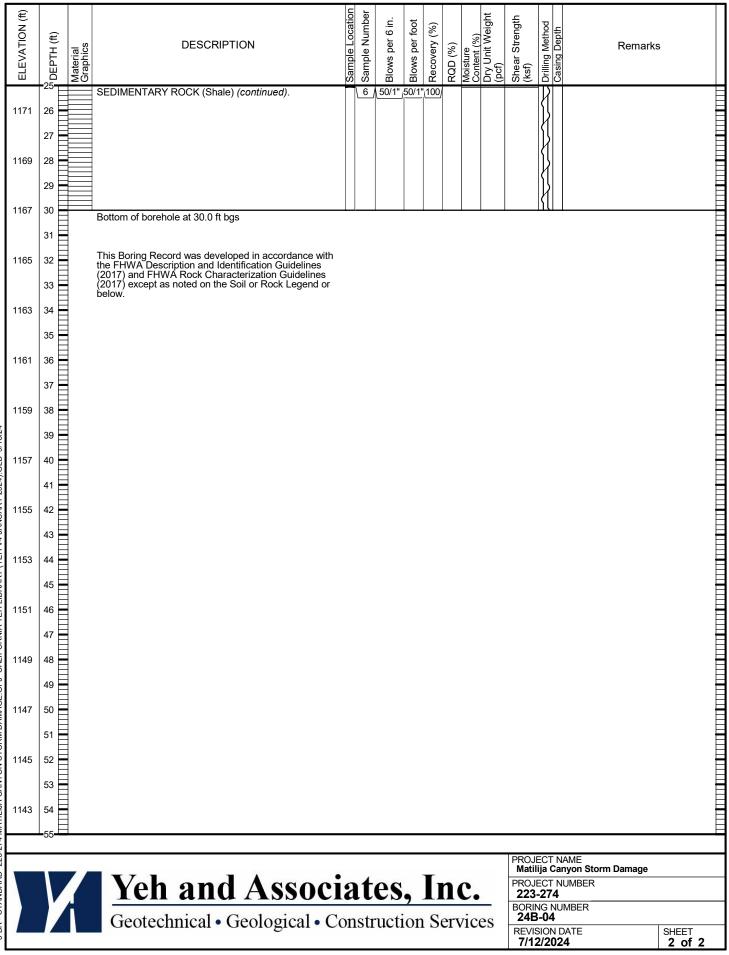

SHEET 1 of 2 Page A-1 of A-10

DATE **7/12/2024**

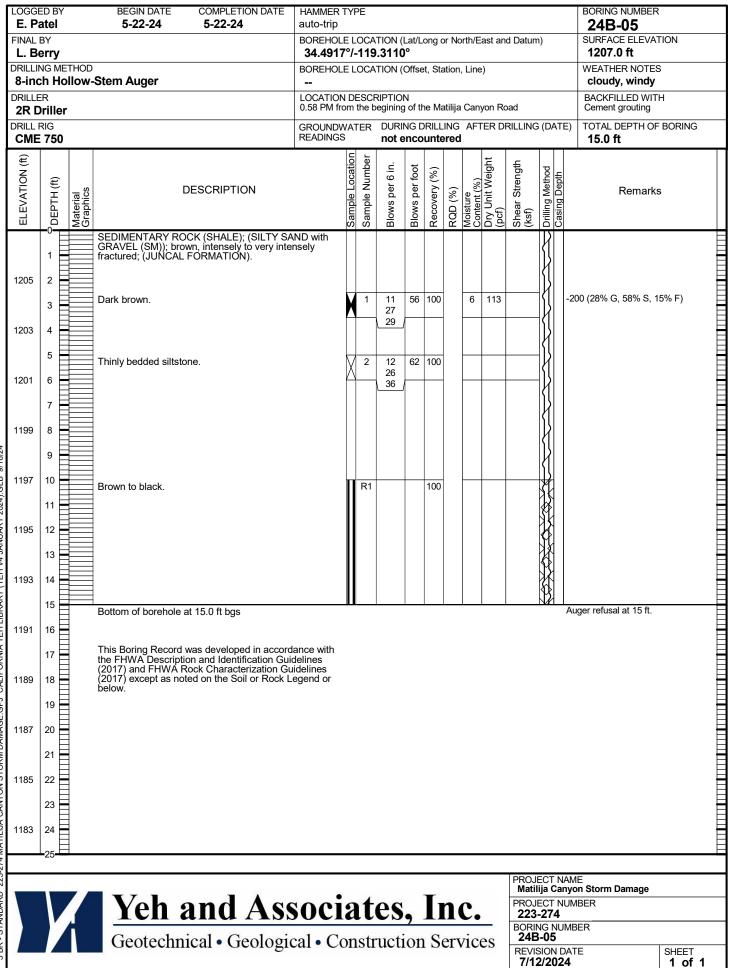
ROO	CK GRAPHIC SYMBOLS				BEDDI	NG S	PACING		7		
			De	escriptor			Thickne	ss or Spacing			
	IGNEOUS ROCK SEDIMENTARY ROCK		Ve Th	assive ery thickly b hickly bedde	ed		> 10 ft 3 to 10 f 1 to 3 ft				
	METAMORPHIC ROCK		Th Ve	oderately b hinly bedde ery thinly be aminated	d						
	I	WEAT			PTORS FO	RIN	TACT RO	DCK			
	Chemical Weathering-Discol	oration O	•	Mechanica		- 1	Toxturo or	nd Solutioning			
Descriptor	Body of Rock	Fracture		and Grai	al Weathering n Boundary ditions	"	Texture a	Solutioning	General Ch	naracteristics	
Fresh	No discoloration, not oxidized	No disco	oration	ation No separation, intact No cha		change	No solutioning	Hammer rings	when crystalline		
Slightly Weathered	Discoloration or oxidation is limited to surface of, or short distance from, fractures; some feldspar crystals are dull	or oxidati Minor to discolora oxidation surfaces	complete tion or	(tight) No visible s intact (tight		Pres	served	Minor leaching of some soluble minerals may be noted		к. when crystalline k. Body of rock	
Moderately Weathered	Discoloration or oxidation extends from fractures usually throughout; Fe-Mg minerals are "rusty"; feldspar crystals are "cloudy"	All fractu surfaces discolore oxidized	are	Partial sepa boundaries		Gen pres	erally served	Soluble minerals may be mostly leached	Hammer does rock is struck. slightly weaker	not ring when Body of rock is ned.	
Intensely Weathered	Discoloration or oxidation throughout; all feldspars and Fe-Mg minerals are altered to clay to some extent; or chemical alteration produces in situ disaggregation (refer to grain boundary conditions)	All fractu surfaces discolore oxidized: are friable	are d or surfaces	Partial separation, rock is friable; in semi-arid conditions, granitics are aces disaggregated			red by mical ntegration n as via ration or llation	Leaching of soluble minerals may be complete	with moderate pressure or by blow without re planes of weak	lly can be broke to heavy manua light hammer ference to ness such as rline fractures of	
Decomposed	ecomposed Discolored of oxidized throughout, but resistant minerals such as quartz may be unaltered; all feldspars and Fe-Mg minerals are completely altered to clay				Complete separation of grain boundaries (disaggregated)			soil; partial or nant rock be preserved; luble minerals ete	Can be granula Resistant mine quartz may be "stringers" or "o	rals súch as	
descriptor for	nt intervals of where characteri ant identifiable zones can be d "decomposed to intensely wea RECOVERY CALCULATIO	inered".		o adjacent de	escriptors sha	all be c		"Very intensely we	athered" is the o	combination	
			Des	criptor	Criteria						
Σ Length o Tota	f the recovered core pieces (al length of core run (in.)	<u>in.)</u> x 100) Extr	remely Hard y hard	chipped with r		be scratched with pocket knife or sharp pick; can only be ated heavy hammer blows be scratched with pocket knife or sharp pick; breaks with				
	RQD CALCULATION (%)		Har	d				with pocket knife o ws required to brea	r sharp pick with	n heavy	
ľ	CE CALCOLATION (70)		Moo Har	derately							
${f \Sigma}$ Length	of intact core pieces > 4 in.	x 100	Mod	derately	Specimen c	an be g	be scratched with pocket knife or sharp pick with sure; breaks with moderate hammer blows be grooved 1/6 in. with pocket knife or sharp pic			k with moderate	
Tota	I length of core run (in.)		Soft Soft		or heavy pre	essure	; breaks w	ith light hammer bl	ow or heavy har	nd pressure	
			Ver	ry Soft				r gouged with pock moderate hand pr ented, grooved, or aks with light hand			
						F	RACTU	RE DENSITY			
			Des	scriptor	0	riteria	ı				
			-	fractured		lo frac					
			ry Slightly Fracture		•	s greater 3 s from 1 to	s ft o 3 ft, few lengths o	utside that range	е		
				, ,				ns mostly in range of 4 in. to 1 ft, with most lengths about 8 in. ns average from 1 in. to 4 in. with scattered fragmented als with lengths less than 4 in.			
				ry Intensely F				oths less than 4 in. fragments with few			
							REPORT		OCK CLAS	SIFICATION	
	Yeh and A						PROJEC				
	Geotechnical • Geo	ologica	l•Co	nstructio	on Servic	es	DATE 7/12/2			SHEET	






223-274 MATILIJA CANYON STORM DAMAGE.GPJ CALIFORNIA YEH LIBRARY (YEH V4 JANUARY 2024).GLB 9/18/24 5 BR - STANDARD

Page A-5 of A-10

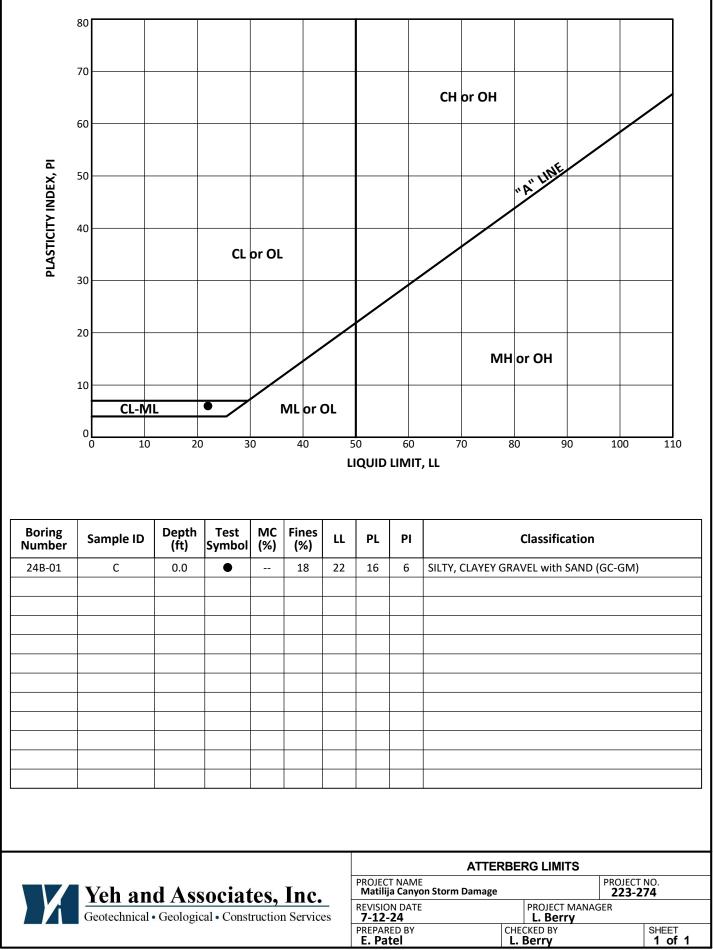


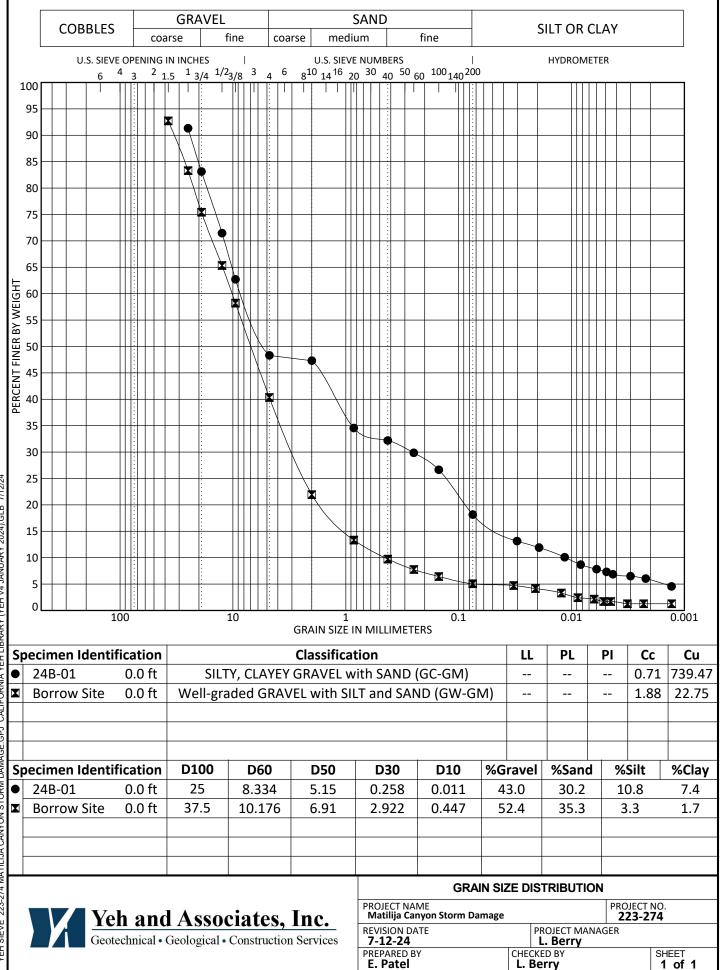
Page A-6 of A-10

Page A-8 of A-10

LOGG	HAMMER	TYF	ΡE																
FINAL	imon BY		5-30-24	5-30-24	N/A BOREHO	LEL	OCA		(Lat/I	ona	or N	orth/	East a	Ind Datu	um)		BORFACE ELE		
L. Be	erry				34.4929					3					,		1137.0 ft		
DRILLI Othe			lethod		BOREHO	LE L	OCA	TION	(Offs	et, S	tatior	n, Lin	e)			V	VEATHER NC	DTES	
DRILLE 2R D					LOCATIO 0.8 PM frc					e Ma	tilija	Cany	/on Ro	bad		BACKFILLED WITH N/A			
drill N/A	RIG				GROUNDWATER DURING DRILLING AFTER DRILLING (I READINGS not encountered							G (DA		OTAL DEPTH	H OF BORING				
(ft)					·	ation	ber	.Ľ	ot				ght	gth (p				
ELEVATION (ft)	(ft)	s	г	DESCRIPTION		Sample Location	Sample Number	Blows per 6 in.	Blows per foot	ry (%)	(9	(%)	Dry Unit Weight (pcf)	Shear Strength (ksf)	Drilling Method		Rema	arks	
EVA	DEPTH (ft)	Material Graphics				mple	mple	d sw	ws p	Recovery	RQD (%)	isture	/ Uni	ear S f)	ling l	2			
Ш		ΣΩ				Sa	Sa	BIC	Blc	Re	RC	ŝ₀	<u> </u>	rs s)	ĒČ		52% G, 35% S	5% F)	
	1		with SILT and SAND	CK (SHALE); (Well-grade (GW-GM)); (JUNCAL		Γ										CR (SO ²	oH = 7.62, r = = 92 ma/ka. (1,540 ohm-cm Cl = <2 ma/ka)	·Ε
1135	2		Bottom of borehole at	0.5 ft bgs												CP (11%)	у _{D. мах} = 127 р	cf, w _{OPT} =	
1100	3		T I: D : D													βE			
1100			the FHWA Description (2017) and FHWA Re	vas developed in accorda n and Identification Guid ock Characterization Guid	elines delines														
1133	4		(2017) except as note below.	ed on the Soil or Rock Le	gend or														E
	5																		E
1131	6																		E
	7																		E
1129	8																		E
	9																		E
1127	10																		
	11																		E
1125	12																		
	13																		
. 1123	14																		E
1120																			
	15																		E
1121	16																		E
	17																		E
1119	18																		
	19																		Ħ
1117	20																		E
	21																		E
1115	22																		
	23																		
1113	24																		E
	25																		
<u> </u>	-														FCT	NAME			
V			X 7-1	T . A	•				, n	T	1000			Matil	ija Ca	anyon	Storm Damag	je	
			Yeh a	and Ass	SOCI	a	t	es	•			c.		PROJECT NUMBER					
	Geotechnical • Geologia						str	ucti	on	Se	erv	vice	es	Bor	row	UMBEI Site	≺		
_							-								sion 2/202	DATE 24		SHEET 1 of 1	

5 BR - STANDARD 223-274 MATILIJA CANYON STORM DAMAGE.GPJ CALIFORNIA YEH LIBRARY (YEH V4 JANUARY 2024).GLB 9/25/24


Page A-10 of A-10


APPENDIX C - RESULTS OF LABORATORY TESTING

SUMMARY OF LABORATORY TEST RESULTS

	Sample I	nformat	ion	4			Gra	adatio	on	Atte	berg		Corro	sion		Comp	action				
Boring No.	Sample No.	Depth (ft)	Sample Type	Total Unit Weight, γ, (pcf)	Dry Unit Weight, γ _d , (pcf)	Moisture Content (%)	Gravel (%)	Sand (%)	Fines (%)	Plasticity Index (PI)	Liquid Limit (LL)	Н	Resistivity (Ω - cm)	SO ₄ ^{2.} (mg/kg)	Cl [.] (mg/kg)	Max. Dry Unit Weight, $\gamma_{d, MAX'}$ (pcf)	Optimum Moisture Content (%)	R-Value	Expansion Index	Additional Testing	Soil/Rock Classification
24B-01	С	0.0	BULK				43	30	18	6	22										SILTY, CLAYEY GRAVEL with SAND (GC-GM
24B-01	1	2.5	SPT									7.58	2,001	29	<2						SILTY, CLAYEY GRAVEL with SAND (GC-GM
24B-02	D	0.0	BULK																	DS	SILTY, CLAYEY GRAVEL with SAND (GC-GM
24B-02	1	2.5	MCAL	118	109	8						7.87	2,989	13	<2	131	12			DS	SILTY, CLAYEY GRAVEL with SAND (GC-GN
24B-03	1	2.5	SPT			4	80	6	14												SILTY, CLAYEY SAND with GRAVEL (SC-SM
24B-04	А	0.0	BULK													134	12			DS	SILTY, CLAYEY GRAVEL with SAND (GC-GM
24B-04	1	2.5	SPT									7.68	1,730	25	<2						SEDIMENTARY ROCK (SILTSTONE)
24B-04	2	5.0	MCAL			1															SEDIMENTARY ROCK (SHALE)
24B-05	1	2.5	MCAL	120	113	6	28	58	15												SILTY SAND with GRAVEL (SM)
orrow Site	1	0.0	BULK				52	35	5			7.62	1,540	92	<2	127	11			SE	WELL-GRADED GRAVEL WITH SILT AND SAM
andstone Boulder	1A	0.0	GRAB	158																UC	SEDIMENTRY ROCK (SANDSTONE)
andstone Boulder	1B	0.0	GRAB	151																UC	SEDIMENTRY ROCK (SANDSTONE)

PROJECT NAME Matilija Canyon Storm Damage	
PROJECT NO. 223-274	REVISION DATE 7-12-24
PROJECT MANAGER	PREPARED BY
L. Berry	E. Patel
CHECKED BY	SHEET
L. Berry	1 of 1

6/6/2024

Client Yeh and Associates, Inc. Address Yeh and Associates, Inc. 56 E. Main Street Suite 104 Ventura CA, 93001

Client Reference No

Project No 0107

Project Yeh - On-Call Master Agreement Material Source Matilija Canyon, Ojai; Borrow Site Material Description Silty Sand (SM); light brown, moist Location Detail Borrow Site #1 @ 0-0.5'

Sand Equivalent Value of Soils and Fine Aggregate

Caltrans CT217 **Date Tested** 6/6/2024 Sample Rec Date 5/30/2024 Date Sampled 5/30/2024

Sampled By Client

Prep Method	Dry
Shaker Method	Mechanical Shaker
	Specifica
Sand Reading Average	4.1
Clay Reading Average	6.5
Sand Equivalent Value	63.0

Remarks

Technician Adam Sinutko Digital Signature By User Login Manager Adam Sinutko Digital Signature By User Login

Test results relate only to the sample tested. This test report shall not reproduced, except in full, without the prior written approval of the agency. Lab Address 2247 Statham Blvd. Oxnard CA, 93033

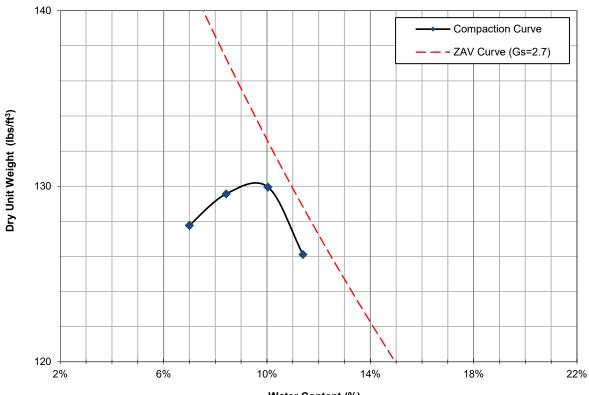
System Link http://umt.vahalo.com/assignments/A2C366FD-75A7-4767-5EA2-DAC503C99D62

System Path Yeh - On-Call Master Agreement / SOILS / AGGREGATE LAB / 0107 - MCSD - 223-274 (SE) @ 0 - 0.5' YEH240530

Page C-4 of 11

1/1

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING


Proctor Compaction

Test Method: ASTM D698, D1557

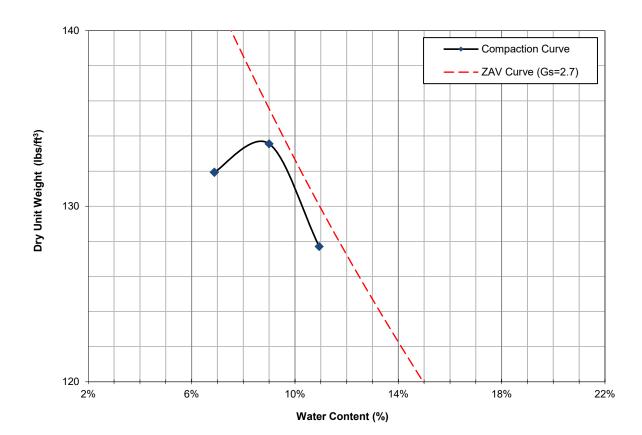
Lab Max. Dry Unit Wt. (lbs/ft³)

Project Name	Matilija Cany	on Storm Dama	Project No.	223-274							
Tested By	GF		Testing Date	6/10/2024							
	SPECIMEN I	D AND CLASSI	FICATION								
Boring No.	23B-02	Sample No.	D	Depth (ft)	2.5						
Soil Description	Lean CLAY (C	L): brown, mois	t								
	EQUIPME	NT AND PROC	CEDURE								
Test Method (D698/D1557)	D1557	Ram. Mass (g)	4530	# of Lifts	5						
Mold Volume (cm ³)	943	Mold Mass(g)	2001	Blows/ Lift	25						
DENSITY AND MOISTURE MEASUREMENTS											
Mass of Soil + Mold (g)	4067	4124	4162	4124							
Dish ID	34	33	22	23							
Mass of Dish (g)	559.78	525.35	480.17	630.89							
Mass of Moist Soil + Dish (g)	2,453.68	2,451.54	2,467.89	2,737.87							
Mass of Dry Soil + Dish (g)	2,329.76	2,301.88	2,286.53	2,522.32							
		RESULTS									
Water Content	7.0%	8.4%	10.0%	11.4%							
Dry Density (Mg/m ³)	2.048	2.076	2.083	2.021							
Dry Unit Weight (lbs/ft ³)	127.8	129.6	130.0	126.1							
Lab Max. Dry Density (Mg/m ³)	2.0)91	Optimum Wat	11.6%							

130.5

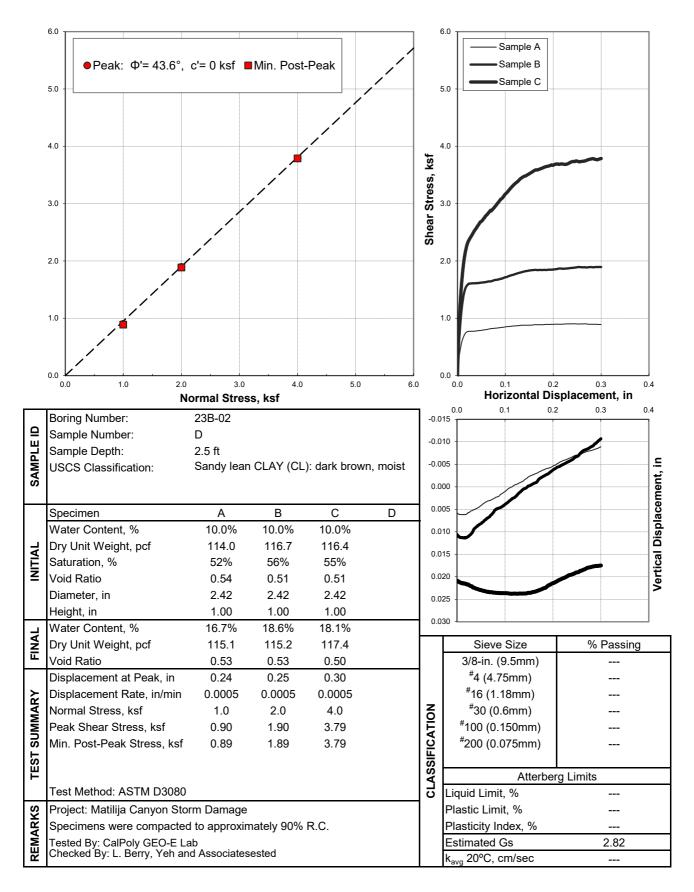
Water Content (%)

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

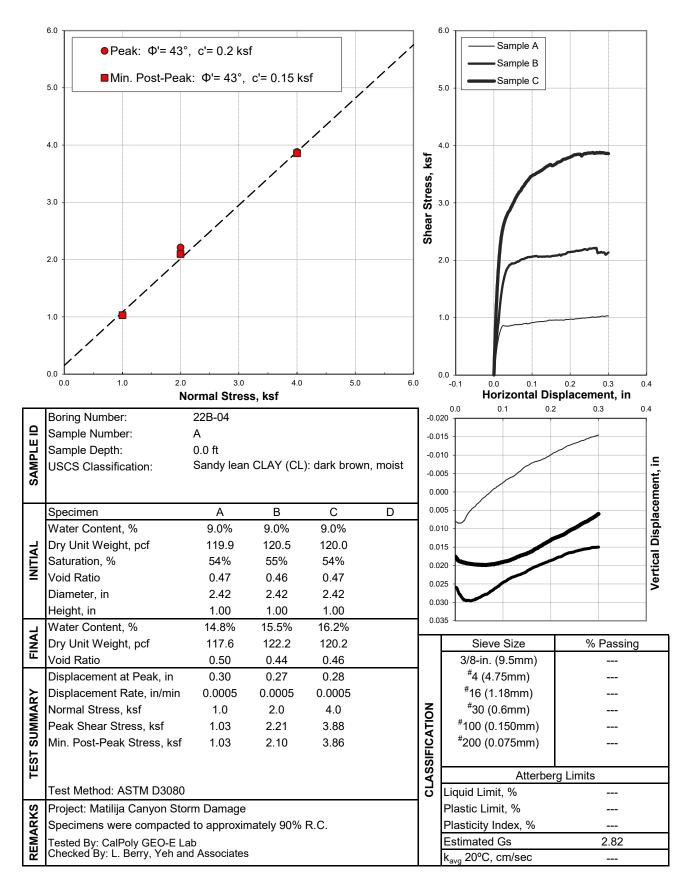

Proctor Compaction

Test Method: ASTM D698, D1557

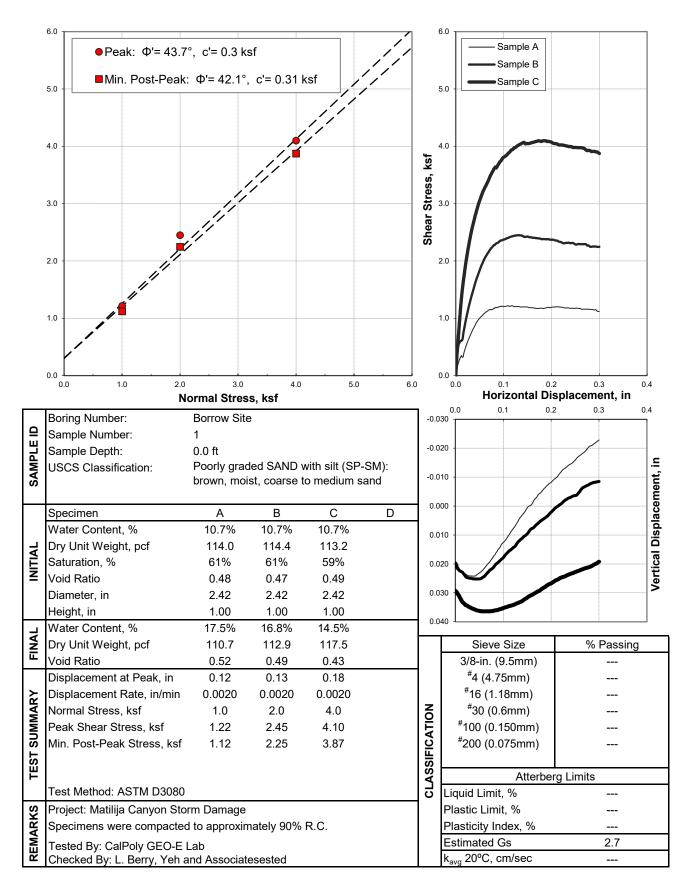
Lab Max. Dry Unit Wt. (lbs/ft³)



Project Name	Matilija Cany	on Storm Dama	Project No.	223-274							
Tested By	GF		Testing Date	6/10/2024							
	SPECIMEN I	D AND CLASSI	FICATION								
Boring No.	23B-04	Sample No.	А	Depth (ft)	0.0						
Soil Description	Lean CLAY (C	CL): brown, mois	st								
EQUIPMENT AND PROCEDURE											
Test Method (D698/D1557)	D1557	Ram. Mass (g)	4530	# of Lifts	5						
Mold Volume (cm ³)	943	Mold Mass(g)	2001	Blows/ Lift	25						
DENSITY AND MOISTURE MEASUREMENTS											
Mass of Soil + Mold (g)	4132	4201	4142								
Dish ID	21	20	32								
Mass of Dish (g)	478.28	534.04	478.54								
Mass of Moist Soil + Dish (g)	2,169.97	2,669.66	2,592.33								
Mass of Dry Soil + Dish (g)	2,061.03	2,493.31	2,383.93								
		RESULTS									
Water Content	6.9%	9.0%	10.9%								
Dry Density (Mg/m ³)	2.114	2.140	2.047								
Dry Unit Weight (lbs/ft ³)	131.9	133.6	127.7	#VALUE!							
Lab Max. Dry Density (Mg/m ³)	2.2	139	Optimum Wat	11.6%							

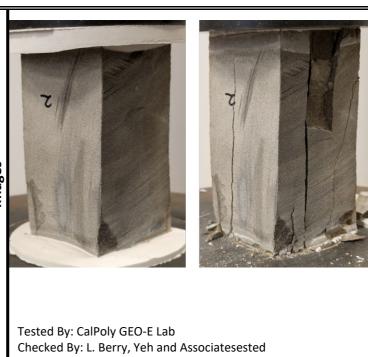


133.5


Page C-6 of 11

DIRECT SHEAR TEST REPORT

DIRECT SHEAR TEST REPORT


DIRECT SHEAR TEST REPORT

Unconfined Uniaxial Compressive Strength Test of Cut Rock Prisms

	Job No.:	223-274
⊢	Project:	Matilija Canyon Storm Damage
С. Ш	Client:	Yeh & Associates
PROJ	Date:	7/2/2024
PF		This test is based on ASTM D7012 (1.5.3 Method C: Uniaxial Compressive Strength of Intact Rock Core Specimens). Test specimens were saw cut from provided rock samples not from cores.

Sample ID	Sample Number: Sample Depth: Classification: Moisture Condition: Moisture Content:	1 N/A Cut Prism Lab. Conditioned Not Determined	ges		
Properties	Unit Weight (pcf):	158.3	Images		
rop	Length (in.)	3.471			
	Width 1 x Width 2 (in.):	1.696 x 2.1		Note: crack and missing pi	ece near top on right face
	Comp. Strength (psi):	11,700		prior to	
core	ASTM D7012 section 8.1.1 es should be a minimum of sfies this requirement	-			

0	Boring Number:	N/A						
Sample ID	Sample Number:	2						
amp	Sample Depth:	N/A						
S	Classification:	Cut Prism						
	Moisture Condition:	Lab. Conditioned						
S	Moisture Content:	Not Determined	magae					
ertie	Unit Weight (pcf):	150.9	5					
Properties	Length (in.)	3.929						
Ъ	Width 1 x Width 2 (in.):	1.74 x 1.976						
	Comp. Strength (psi):	14,830						
Per ASTM D7012 section 8.1.1 Length/Diamter of cores should be a minimum of 2.0; Length/Width 1 satisfies this requirement								

Corrosivity Tests Summary

CTL #		225		Date		2024		Tested By:	PJ		Checked:		PJ	
Client:	Yeh	and Associa	ites	Project		Matilija Ca	anyon Storm	Damage		-	Proj. No:	223	3-274	
Remarks:										-				
Sam	ple Location	or ID	Resistiv	rity @ 15.5 °C (0	Ohm-cm)	Chloride	Sul	fate	рН	OR	Р	Sulfide	Moisture	
			As Rec.	Min	Sat.	mg/kg	mg/kg	%	•	(Red		Qualitative	At Test	
						Dry Wt.	Dry Wt.	Dry Wt.		E _H (mv)	At Test	by Lead	%	Soil Visual Description
Boring	Sample, No.	Depth, ft.	ASTM G57	Cal 643	ASTM G57	ASTM D4327			ASTM G51	ASTM G200	Temp °C	Acetate Paper		
23B-01	1,2	2.5-5.0	-	-	-	<2	29	0.0029	-	-	-	-	7.9	Yellowish Brown Sandy CLAY w/ Gravel
23B-02	1,2	2.5-5.0	-	-	-	<2	13	0.0013	-	-	-	-	2.8	Brown Clayey SAND w/ Gravel
23B-04	1,2	2.5-5.0	-	-	-	<2	25	0.0025	-	-	-	-	4.2	Dark Brown Clayey SAND w/ Gravel
Borrow Site	#1	0.5	-	-	-	<2	92	0.0092	-	-	-	-	4.0	Dark Brown Clayey SAND w/ Gravel