Attachment H

Feasibility Level Slurry System Design

May 13, 2003

Mr. Doug Chitwood U.S. Army Corps of Engineers, Geotechnical Branch 911 Wilshire Blvd., 13107 Los Angeles, CA. 90017

Mr. Chitwood:

I would like to thank you and the Corps of Engineers for the opportunity to again provide assistance to the Matilija Dam Project.

The following report relates to the observations made during the visit to your offices and the site on April 8 and 9, 2003. Furthermore, it reflects the current thinking with regards to the slurry option. It is based on a review of the documents provided by you and work performed by myself.

This work was performed under U.S. Army Corps of Engineers Contract # DACW09-03-P-0042.

I would like to express my personal appreciation for your hospitality during my recent visit.

Respectfully submitted:

A. R. Thabit, President

EXECUTIVE SUMMARY:

A visit to the Los Angeles branch and the Matilija dam was conducted during April 8 and 9, 2003. The purpose of the visit was to review the proposed design with respect to current project alternatives, review the slurry option in an attempt to reduce water consumption and review constructability of the slurry option.

The remaining slurry option has been refined to reflect current thinking and reflect changes associated with reducing water consumption. Additional costs have been added to reflect those items identified with constructability, items not originally covered and reduction of water consumption.

The slurry scenario involves transporting roughly 2.1 MM cubic yards of sediment to a land based disposal facility, 4 miles distant from the dam. This scenario is still technically feasible. The capital cost estimate for the transport portion of this scenario is roughly \$2.7 million. It does not consider the costs of dredging, operating costs, power supply and development of the pipeline right of way to include any acquisition or remediation costs. Additionally, the costs of constructing a tailings storage facility are not included in this estimate. Furthermore, additional costs would be involved in removing the remaining sediments. No parameters were given as to how this would be accomplished and it is, therefore, not considered in this report. The Corps of Engineers will develop the complete cost estimate for this scenario.

Several recommendations are made with respect to additional test work required to more fully develop the slurry transport scenario. Also, it is strongly recommended that a stringent review of the test work and design be conducted prior to construction of the slurry option.

INTRODUCTION:

At the request of Mr. Doug Chitwood, U.S. Army Corps of Engineers, Geotechnical Branch, I visited the offices of the Los Angeles branch, on April 8 and 9, 2003, for a series of meetings on the Matilija Dam Project. I also had the opportunity to visit the site to review constructability issues. The discussions centered around the current thinking with respect to the slurry option, and a desire to minimize the use of water in the event that the slurry option is utilized. These items are discussed in detail in the body of this report.

DISCUSSION:

I have been advised that the various options still under consideration include:

Slurry transport of the fine fraction (approximately 2.1MM cubic yards) to a land based storage facility.

Upstream storage of all or part of the material behind the dam.

Notching the dam to permit natural removal of the sediments from behind the dam.

Selling the coarse fraction material.

The slurry transport option will be explored in greater detail in the following sections. I do, however, want to briefly discuss the next two options.

Upstream storage of all or part of the material is an attractive option. There is a flat area on the north east side of the dam where material can be stored. The only concern would bank stability. I had suggested to Doug Chitwood that a soil-cement mixture might provide the necessary stability. The material would still have to be dried to a moisture content suitable for mixing with the cement. This would be a very economical method if sufficient stability can be achieved.

Mr. Chitwood indicated that the current thinking with respect to notching the dam is to bring it down in two lifts. This would be accomplished by moving material presently against the upstream face further up stream to a sufficient depth to remove the upper half of the dam. My concern is that during a storm event this could send a large uncontrolled volume of slurry down the river channel. It had always been my impression that, in this scenario, the dam would be taken down in multiple lifts with sufficient time in between to allow the slurry to move downstream in a more or less controlled fashion. It is my understanding that others are in the process of studying this option so I will not comment further.

SLURRY TRANSPORT:

It is my understanding that there is only one slurry option still under consideration. It was described as Alternative #2 in my report dated November 27, 2002. It will be expanded on and discussed further in this report. The revised capital cost estimate for the slurry transport portion of this option is shown in Appendix A.

The slurry option would utilize several dredges to slurry roughly 2.1 million cubic yards (ultra-fine fraction) of sediment in 9 months. Fresh water from Lake Casitas would be used as the slurrying media. The slurry would then pass through a stationary screen and enter a thickener. The thickener would be used to increase the solids concentration of the slurry and provide recycle water for the dredging operation. A make up water pump would be required to pump water to the dredges. A 60,000 gallon water storage tank would also be required for surge capacity.

The slurry would then be transported via pipeline to a land based disposal facility approximately 4 miles away. An 8 mile long pipeline and pumping system from Lake Casitas will supply the fresh water. The fresh water pipeline will be carbon steel and the slurry pipeline will be HDPE.

A tailings storage facility will be needed for this option. This facility can be an earthen embankment with an HDPE liner at the dam toe to catch the water that is liberated from the slurry and a sump pipe for transporting the clarified water into the canal that feeds Lake Casitas. The pipeline would be approximately 2000 feet long and could be 16" diameter CMP. It will probably take several years to drain the entrained water sufficiently to stabilize the sediments.

TECHNICAL DISCUSSION:

In the process of developing the parameters for this option numerous calculations, decisions and assumptions were made.

The calculations included pipe wall thickness, friction losses, horsepower requirements and limiting velocity of the slurry.

Decisions included such things as selection of a d_{50} particle size for the slurry. Also, line size selection was based on economic analysis using an assumed power cost of \$0.15/kw. The decisions may not be completely correct but were based on experience and logic. In most cases they are believed to be conservative and would result in lower project costs once more data comes available and the design work proceeds.

The assumptions were made, primarily, due to a lack of information. They are based on past practice but are considered less reliable than the decisions. For example it was assumed that the dredges would produce a slurry that was 15% solids by volume and 50% of the water volume could be removed by thickening. Also, the thickener vendor assumed a settling rate for the solids in the slurry. These, like the other assumptions made, are based on experience but will need to be proven for the design to go forward.

The fresh water pipe line could follow the canal to Lake Casitas for much of the distance to the dam. However, some consideration must be given to the numerous road crossings. The slurry pipeline right of way should probably be 24 feet to accommodate movement of the HDPE pipeline.

A concrete vault can be used to house the fresh water pump at Lake Casitas. It could be buried on shore with a suction pipe from the lake to the vault at a sufficient depth to bring the water to the pump. The fresh water would then be pumped 8 miles through a 16" diameter by 0.375" wall thickness, carbon steel (A 53 gr. B) pipe. The elevation from Lake Casitas to the base of the Matilija Dam is rising by 412 feet. The motor horsepower required to pump 3,000 gallons per minute is 800 horsepower and will require one pump at Lake Casitas.

The slurry pipeline is designed to be 4 miles long with a 400 foot down gradient. This down gradient exceeds the friction loss in the pipeline by 57 feet. In order to maintain the pipeline at positive pressure and maintain the velocity above the limiting velocity a choke will have to be installed on the end of the line. As currently envisioned, the pipeline is 18" diameter, SDR 11, HDPE pipe with an inside diameter of 14.532 inches. The motor is 400 horsepower, comprised of 1 pump. The assumed d₅₀ for the solids in the slurry is 0.040 mm, that plus the specific gravity of 2.65 and a slurry of 30% solids by volume were used to determine the limiting velocity. The limiting velocity for the pipe diameter selected is 8.82 fps. The calculated velocity at 4,500 gpm is 8.7 fps. The limiting velocity should always be 10% lower than the line velocity. However, experience has shown that ultra-fine sediments will stay in suspension at velocities of 6 fps. In a subsequent discussion with Mr. Doug Chitwood he indicated that current test work has yielded a weighted average d₅₀ of 0.015mm. The limiting velocity was calculated for this average size and is 6.579 fps. This is well within the operating parameters for the pipe and pump selected for slurrying the fine material. These values must be verified by test work as it may affect the current selection of pump, pipe diameter and horsepower. Also, an additional 20% friction head was added to the horsepower calculation to compensate for slurry viscosity and other unknowns. Testing must be conducted to determine the extent to which the viscosity of the slurry will increase friction losses in this pipeline. The literature suggests that friction losses due to viscosity of ultra-fine, homogenous slurries can be negligible. In fact, the calculation indicates only a 2% loss due to viscosity in the 4 mile long pipeline.

During the site visit the location for the thickener was reviewed. The thickener is now proposed to be 115 feet in diameter. The size of the thickener has been increased from the 105 feet in diameter in the original report due to the smaller d_{50} of 0.015mm. The finer particles will take longer to settle. There is not an acceptable location for this size of equipment below the dam. It has therefore, been relocated above the dam some 3,500 feet further away from the disposal site and 108 feet higher in elevation. The slurry is fed to the center well of the thickener from the dredges, the thickened slurry settles to the bottom center cone, into the slurry pump and pipeline. The semi-clear water flows into a channel on the outside perimeter of the thickener. The thickener overflow will be piped to the water storage tank located below the dam. The pipe will be 3,600 feet long and be a 14" diameter carbon steel pipe. A rake mechanism rotates in the thickener itself. Flocculant is a polymer that is added to the thickener to aid in settling. Test work will be required to determine the correct flocculant, injection rate and the solids settling rate to select the correct thickener size.

A significant portion of the effort of this report is devoted to reducing the amount of water supplied from Lake Casitas. Mr. Chitwood indicated that the cost to purchase the water would be \$1,000 per acre foot. This cost combined with the ever present drought in the West and new restrictions on minimum water flows to be maintained in streams make recycling the water important. If there was no attempt to recycle the water, assuming the

dredges discharge the slurry at 15% solids by volume the cost of purchasing the water would be \$7,376,033. The addition of the thickener will reduce the cost of the water purchased to \$3,688,016 at a capital cost of roughly \$2.7MM. However, it must also be recognized that slurrying the less dense slurry (15% vs 30%) will require a higher line velocity and as such will consume more power, increase abrasion in the pipeline and require a larger impoundment. The added costs associated with pumping a less dense slurry are not reflected in the cost analysis. If half of the water can be recovered from the slurry at the tailings impoundment and returned to Lake Casitas an additional \$1.5MM could be realized; assuming that they will credit the project for the water that is returned to them. Furthermore, water may be recovered from upstream of the dam or from the stream bypass. This water could, very economically be piped into the water storage tank; although its cost benefit is considered quite small.

Other options were investigated to reduce water consumption. These included, providing additional tank storage capacity for the water coming from upstream and filter presses to squeeze all available water from the slurry at the tailings impoundment. These options were found to be uneconomic and are not deserving of consideration.

Based on the analysis of reducing water consumption a fresh water storage tank is still warranted for surge capacity. The water storage tank and make up water pump are, therefore, still included in this design. The water storage tank has a 60,000 gallon capacity, is 22' in diameter by 22' tall and is carbon steel. It would receive water from Lake Casitas and from the thickener overflow. Water will be pumped from this tank to the dredges. For pricing purposes it was assumed that the pumps would be capable of 9,000 gpm and a head of 590 feet giving a discharge pressure of 150 psi at the dredges. The total distance to be pumped was assumed to be 1 mile at the farthest point with a vertical rise of 115 feet. It was assumed that a 20" diameter carbon steel pipeline would be used and the horsepower required would be 2700 hp.

During the site visit, it was observed that there is three phase power available reasonably close at both Lake Casitas and the dam. The available voltage was not, however discernable. The cost of power is an extremely important component of the slurry transport alternative. At a cost of \$0.15/kwh the power cost will exceed \$3 million over the 9 months of operation. Capital cost to get the power supply to where it is needed and operating cost will have an impact on the viability of the slurry transport scenario. These costs are not included in the cost estimate; the estimated power cost of \$0.15/kwh was only used in the economic analysis for pipe diameter selection.

COST ANALYSIS:

Present day pricing was obtained by reputable vendors for the pipe, pumps and thickener. The cost of the water storage tank was calculated in house. Competitive bidding was not used for this exercise as time was of the essence. Also, the carbon steel pipe is of foreign manufacture, which may be of some political concern. The vendor quotes may be found in Appendix C.

For this aspect of the project (pipelines, pumping and tankage) it can be assumed that the installed cost will be on the order of 2-3 times the cost of the materials and equipment. As

this is a short term operation, it is assumed that no significant infrastructure will be constructed to provide services to this operation.

Equipment and pipe cost for this option is \$2.678 MM. The capital cost estimate for the slurry transport portion of this scenario is shown in Appendix A. A comprehensive cost for this scenario will be developed by the Corps of Engineers.

Operating and maintenance staffing was considered for this scenario. Some level of automation is considered a necessity to achieve reasonable system utilization. With this in mind it is felt that 4 crews of 3 operators and one electrical/instrumentation technician would be capable of the sustaining the continuous operation. Additionally, contract maintenance would be needed on a sporadic basis to replace wear components. The single slurry pump will probably require one set of wear components during the life of this project.

RECOMMENDATIONS:

If slurry transport is determined to be the preferred method of sediment removal additional test work must be performed. This test work should be performed prior to commencing the design phase. Solids settling rate, flocculant addition rate, limiting velocity and the effect of slurry viscosity on friction losses must all be determined. Statistically significant samples of the sediment, to be transported, will need to be prepared in order have a high level of confidence in the test results.

A stringent review of the test work and design should be conducted by the Corps of Engineers prior to any construction activities.

Most of the assumptions relating to the dredging operation are unsupported. It is very important that dredge requirements for water supply (pressure and flow) and dredge performance relating to percent solids by volume discharged be determined.

APPENDIX A:

CAPITAL COST ESTIMATE

SLURRY TRANSPORT PORTION

MATILIJA DAM COSTS

SLURRY OPTION

DESCRIPTION	NUMBER	UNITS	UNIT	TOTAL
			COST	COST
FRESH WATER PIPE LINE, 8 MILES LONG 16"X.357" WALL, A53 C.S. PIPE	42240	FEET	14.93	630643.20
SLURRY PIPE LINE, 4 MILES LONG 18" SDR 11, HDPE PIPE, 14.532" I.D.	21120	FEET	18.65	393888.00
MAKE UP WATER LINE, 1 MILE LONG 20"X.357" WALL, A53 C.S. PIPE	5280	FEET	20.93	110510.40
THICKENER OVERFLOW LINE, 3600LF LONG 14" X.375" WALL C.S. PIPE	3600	FEET	13.02	46872.00
FRESH WATER SUPPLY PUMP, 800HP GOULDS VERTICAL TURBINE	1	EACH	105875.00	105875.00
CONCRETE VAULT FOR FRESH WATER SUPPLY PUMP	1	EACH	30000.00	30000.00
SLURRY PUMP, 400HP WARMAN SLURRY PUMP	1	EACH	75000.00	75000.00
MAKE UP WATER PUMPS, 900HP EACH GOULDS CENTRIFUGALS, IN SERIES	3	EACH	91903.00	275709.00
THICKENER, 115' IN DIA., INCLUDES FLOC. PKG. 40 HP RAKE MOTOR	1	EACH	900000.00	900000.00
WATER STORAGE TANK, 60,000 GALLONS 22'X22' CARBON STEEL	1	EACH	110000.00	110000.00
TOTAL COST, SLURRY OPTION				\$2,678,497.60

APPENDIX B:

REFERENCES

REFERENCES:

- 1. **Slurry Pumping Manual** Warman International Ltd., 2002
- 2. **Cameron Hydraulic Data** Ingersoll Rand, 1981
- 3. **Standard Handbook for Mechanical Engineers** Baumeister & Marks, 1967
- 4. **Introduction to Mineral Processing** Kelly & Spottiswood, 1982

APPENDIX C:

SUPPORTING DOCUMENTATION

Attachment H – Appendix A

Slurry System Design Cost Estimates

MATILIJA DAM COSTS

DESCRIPTION	NUMBER	UNITS	UNIT	TOTAL
			COST	COST
FRESH WATER PIPE LINE, 8 MILES LONG	42240	FEET	14.93	630643.20
16"X.357" WALL, A53 C.S. PIPE				
SLURRY PIPE LINE, 4 MILES LONG	21120	FEET	18.65	393888.00
18" SDR 11, HDPE PIPE, 14.532" I.D.				
	=000			
MAKE UP WATER LINE, 1 MILE LONG	5280	FEEI	20.93	110510.40
20"X.357" WALL, A53 C.S. PIPE				
	1		405075.00	405075.00
	1	EACH	105875.00	105875.00
GOULDS VERTICAL TURBINE				
	1	FACH	75000.00	75000.00
WARMAN SI LIRRY PLIMP		LAON	70000.00	70000.00
MAKE UP WATER PUMPS. 900HP EACH	3	EACH	91903.00	275709.00
GOULDS CENTRIFUGALS. IN SERIES	_			
THICKENER, 105' IN DIA., INCLUDES FLOC. PKG.	1	EACH	800000.00	800000.00
40 HP RAKE MOTOR				
WATER STORAGE TANK, 60,000 GALLONS	1	EACH	110000.00	110000.00
22'X22' CARBON STEEL				
TOTAL COST, ALTERNATIVE 2				\$2,501,625.60

Attachment H – Appendix B

Slurry System Design Calculations

MATILIJA DAM DATA ANALYSIS

ALTERNATIVE 1

WATER SUPPLY

DISTANCE MILES	FLOW RATE GPM	PIPE ID. INCHES	NOMINAL DIA. TYPE/INCHES	VELOCITY FT/SEC	TOTAL HEAI	D PRESSURE PSI	ELECT POWER HORSEPOWER	COSTS	PIPE \$/LFT	PIPE TOTAL	PUMPS NUMBER	PUMPS EA. COST	PUMPS TOTAL	THICKENER COST	TANK COST	POWER \$/KW	ELECT. TOTAL
8 8	6500 6500	19.25 23.25	A53GRB/20" A53GRB/24"	7.165 4.912	972.51 635.25	421 275	2000 1600		20.93 25.19	884083.20 1064025.60	2 2	125535 106057	251070 212114			0.07 0.07	578340.00 462672.00
SLURRY DI	SCHARGE																
DISTANCE MILES	FLOW RATE GPM	PIPE ID. INCHES	NOMINAL DIA. TYPE/INCHES	VELOCITY FT/SEC	TOTAL HEAI	PRESSURE PSI	ELECT POWER HORSEPOWER										
16	9500	16.146	SDR11/20"	14.89	2788.5	1207	15600		23.38	1975142.40	13	220000.00	2860000.00	900000.00	142000.00	0.15	9666540.00
MAKE UP V 1	VATER PUMPS 12000	S 23.25	A53GRB/24"	9.068	549	238	2700		25.19	133003.20	3	93751	281253.00			0.15	1673055.00
ALTERNAT	IVE 2																
WATER SU	PPLY																
DISTANCE MILES	FLOW RATE GPM	PIPE ID. INCHES	NOMINAL DIA. TYPE/INCHES	VELOCITY FT/SEC	TOTAL HEAI	PRESSURE PSI	ELECT POWER HORSEPOWER										
8 8	3000 3000	15.25 13.25	A53GRB/16" A53GRB/14"	5.27 6.98	829 1238	359 536	800 1302		14.93 13.02	630643.20 549964.80	1	105875	5 105875 0			0.07 0.07	231336.00 376499.34
SLURRY DI	SCHARGE																
DISTANCE MILES	FLOW RATE GPM	PIPE ID. INCHES	NOMINAL DIA. TYPE/INCHES	VELOCITY FT/SEC	TOTAL HEAI	D PRESSURE PSI	ELECT POWER HORSEPOWER										
4	4500	14.532	SDR11/18"	8.705	142.5	62	400		18.65	393888.00	1	75000.00	75000.00	800000.00	110000	0.15	247860.00
MAKE UP V 1	VATER PUMPS 9000	S 19.25	A53GRB/20"	9.92	590	255	2700		20.93	110510.40	3	91903	275709.00			0.15	1673055.00

Attachment H – Appendix C

Supporting Documentation

Delete | Reply | Reply to all | Forward | Bounce | Resume | Save as Back to INBOX

Date Mon, 18 Nov 2002 15:26:36 -0600

From <u>bob.vanderpan@weirslurry.com</u>

To <u>Althabit@fgn.net</u>

Cc tony.przybylek@weirslurry.com@, jim.metsa@weirslurry.com@

Subject Slurry Problem

 Parts
 [no description]
 multipart/mixed
 7113.46 KB €

 2
 Weir Slurry Pumping Handbook.pdf
 application/pdf
 7074.89 KB €

 2
 3
 slurry.doc
 application/msword
 34.90 KB

Message Source

Hi Al,

Jim Metsa asked me to look at this and respond.

I don't find where our slurry handbook indicates 36 feet/second for d50 of 300 microns at 30% CV. Maybe you were looking at a metric version of the Handbook and that it is meters/second. A 10" line would require about 10.8'/s, 20" line about 15'/s and a 30" line 18'/second for conservative figures depending on type of pipe used/actual ID. Here is the latest recently released version of our Handbook .(See attached file: Weir Slurry Pumping Handbook.pdf)
 For dewatering purposes it is the best to pump at least the two smaller fractions.

 A. Use a Warman "Recyclone" to split out the +200 microns.

B. Use smaller Warman "CAVEX" cyclones to split the +20/38
microns
from the -200 from A.
C. Use a thickener to a vacuum beltpress filter to press the -20/38
microns from B.

I spoke to our Tony Przybylek regarding the materials separation/dewatering. 608-221-5834. Tony is our Product Manager for Process Equipment (non-pumps).

3. We could pump the -2mm in a rubber high pressure pump but 16 miles would tentatively require 13-14 pumps (total) separated in two pump stations to keep the line pressure under 1000 psi. I calculated a year, a half year, and three months to pump the product at 2306 gpm, 4612gpm, and 9224 gpm (under 700 psi), respectively. I'm sure these figures are conservative depending on how loose/dry your materials is per cubic yard.

Pumping -64mm would require a metal lined pump. This would shorten the wear life considerably over pumping -2mm with a rubber pump.

http://webmail.fgn.net/horde/imp/message.php3?index=5&array_index=2

11/19/2002

LIDOM. Diany Freedom

Jim P Metsa 11/18/2002 08:40 AM

To: Bob I Vanderpan/US/WAR/Weir@WINET cc:

Subject: Slurry Problem

Bob,

r,

Please see the attachment from Al Thabit. He needs some assistance on pump selection for this dredging application. Could you please give him a call and provide him the information he requires.

Thanks!

----- Forwarded by Jim P Metsa/US/WAR/Weir on 11/18/2002 07:38 AM -----

althabit@fgn.net on 11/18/2002 08:32:09 AM

To: Jim Metsa <jim.metsa@weirslurry.com> cc:

Subject: Slurry Problem

Jim:

It was good talking with you the other day. Attached is a MS Word document describing the issues I am working on. I'm sure there will be some questions and discussion after you have had some time to digest it.

Please give me a call 970 625-3457 when you are ready to talk about this. I'm working on pre-feasability costs for the various scenarios and would like to wrap this up this week if possible.

Regards,

Al (See attached file: slurry.doc)

Regards Bob I Vanderpan, P.E. Senior Technical Support Engineer Weir Slurry TM North America 2701 S Stoughton Rd Madison WI 53716 USA

http://webmail.fgn.net/horde/imp/message.php3?index=5&array_index=2

11/19/2002

.

-

Tel: 001 608 221 5841 Fax: 001 608 221 5810 Bob.Vanderpan@weirslurry.com http://www.Weirslurry.com

Delete | Reply | Reply to all | Forward | Bounce | Resume | Save as Back to INBOX

· U

This project has three potential slurrying alternatives. The final design may be a combination of the three but ultimately will be determined by cost, technical feasibility and environmental constraints.

Total volume to be slurried is estimated at, between 5-6 million cubic yards with a specific gravity of 2.65 and grading from 0.035mm to 10mm. Approximately 2.1 million cubic yards is graded from 0.035mm to 0.062mm. Approximately 2.6 million yards is graded from 0.062mm to 2.00mm. The balance grades from 2 to 64mm and only the smaller fraction of this material will be considered for slurrying.

The maximum distance being considered to slurry the material is 16 miles away, to the ocean. My concept here, was to combine the coarse to fine fractions, increase the solids content to roughly 30% by volume so that the coarse fraction will stay in suspension at lower than normal line velocities needed for the coarse fraction. The elevation drops approximately 1,000 feet in the 16 miles. Using the Warrman Slurry Handbook and a d₅₀ of 0.30mm yielded a line velocity of 36 feet per second. It is my opinion, based on previous experience that this is extremely high. I would like to have a discussion on various methods for extracting the material, increasing the percent solids, determining line velocities based on the d_{50} of the material, friction losses due to viscosity and required horsepower.

The second option being considered is to slurry the 2.1 MM yards of the fine material approximately 4 miles and down grade approximately 300 feet to a land based storage facility. I would like to have a discussion as in the above paragraph. Additionally what dewatering techniques may be used to stabilize this material once transported to the disposal facility.

The third option would be to slurry the midlings fraction (0.062 to 2.00mm) to the beach 16 miles away. This material may or may not have to be dewatered. A discussion of the parameters of this option is also desired.

Lastly I would like to discuss what tests Weir would propose to determine the most realistic values for the final system design.

C. H. Spencer and Company

(775) 753-8088

(775) 753-8186 fax

Court Kimball

Elko, Nevada Office 551 West Main Street Elko, Nevada 89801 Email: chselk@citlink.net

Cindi Nolan

" QUOTATION"

TO:	Al Thabitt	DATE:	Wednesday, November 27, 2002 7:13: 56 AM
QUOTE #	AL Thabitt	TERMS	NET 30
P.O. #		FOB	
DELIVERY		SHIP VIA	:

QUANTITY	DESCRIPTION	PRICE EA
Pump #1 2ca	3250 Gpm @ 635.25 TDH w/ 24" Discharge Line Gould's Vertical Turbine Model 18CHC (5stage) 300# Construction US Electric Motor 800 HP 1800 RPM Solid Shaft WP-2	\$ 106,057.00
Pump#2 2 ea	3250 Gpm @ 972 TDH W/ 20" Discharge line Gould's Vertical Turbine Model 18 CHC (7 Stage) 300 # Construction US Electric Motor 1000 HP 1800 RPM Solid Shaft WP-2	\$ 125,535.00
Pump #3 1ea	3000 GPM @ 829 TDH w/ 15.25" ID Pipe Gould's Vertical Turbine Model 18 BLC (7 Stage) US Electric Motor 800 HP 1800 RPM Solid Shaft WP-2	\$ 105,875.00
	Al, these Prices are Budget if you would need closer Numbers Take off 20% The Thickener pumps are Quoted separate.	
	Thank's Don Canepa 775-846-2132	
	1	

--- PERFORMANCE EVALUATION ---

Flow	Speed	Head	Pump	Power	NPSHr	Motor	Motor	Hrs/yr	Cost
US gpm	rpm	ft	%eff	bhp	ft	%eff	жW		/kWh
3600	1770	637	78.1	739	44.9				
3000	1770	835	84.3	749	33.8				
2400	1770	967	82.5	710	29.8				
1800	1770	1038	73.4	642	28.3				
1200	1770	1110	59.7	563	28				

--- PERFORMANCE EVALUATION ---

Flow	Speed	Head	Pump	Power	NPSHr	Motor	Motor	Hrs/yr	Cost
US gpm	rpm	ft	%eff	bhp	ft	%eff	ΊkW		/kWh
3900	1770	544	80.9	661	30.6				
3250	1770	642	85.2	616	25.9				
2600	1770	720	84.5	558	22 .7				
1950	1770	779	77.2	496	20.4				
1300	1770	828	61.3	442	19.9				

--- PERFORMANCE EVALUATION ---

Flow US apm	Speed rom	Head ft	Pump %eff	Power bhp	NPSHr ft	Molor %eff	Motor kW	Hrs/yr	Cost /kWh
3900	1770	834	82.3	996	30.7				
3250	1770	983	86.1	9 36	25.9				
2600	1770	1095	84.3	851	22.6				
1950	1770	1173	76.1	758	20.5				
1300	1770	1244	60.4	676	19.9				

Goulds Pumps

ITT Industries

C. H. SPENCER & COMPANY Proposal No: ELCK211005 Item No: ITEM001

Court Kimball C. H. Spencer and Company Elixo Nevedu Office 51 West Main Street Elico, Nevedu 89601 Phone: 775-753-8088 Fex 775-753-8166

Nov 26, 2002

QTY: 3

MODEL:3409 Size: 8x12-27

Operating conditions

SERVICE LIQUID CAPACITY Norm./Rate HEAD THICKENER UNDERFLOW , SP.GR 1.050 4000.0 / 4000.0 gpm 549.0 ft

Performance at 1785 RPM

PUBLISHED EFFY RATED EFFY RATED POWER NPSHR DISCH. PRESSURE PERF.CURVE SHUT OFF HEAD 71.0% (CDS) 71.0% 820.1 hp (Run out 890.4 hp) 25.0 (available NPSH is 28.0) (ft) 249.5 (318.2 @ Shut aff) (psi g) A-8271-7 (Rotation CW viewed from coupling end) 700.0 ft

Μ

Materials

CONSTRUCTIONCast inCASINGDuctiliCASING WEAR RINGNitromIMPELLER316SSIMPELLER WEAR RING316SSCASING GASKETVellumSHAFT17-4FSHAFT SLEEVE316SSLUBRICATIONGreaseGLANDCast InCOUPLINGFalk-1COUPLING GUARDSteelBASEPLATEChann

Cast iron / 316SS Ductile iron max.casing.pres.@, rated temp.400.0psi g Nitronic 60 316SS - Enclosed (24.5000 rated (in) max=27.0000 min=20.0000) 316SS Vellumoid 505 17- 4PH 316SS Grease Cast Iron Split Falk-1000G G10 1035-Steel Channel steel

Sealing Method PACKING

Acrylic yarn impregnated with petroleum lubricants and graphite

Flanges 250# flat face Liquid end features Impeller dynamic balance to ISO G6.3

Frame features Inpro VBX Labyrinth Seal

Piping Steel bypass tubing

Baseplate Features Drip Pan with NPT drain connection

PRICES in USD	
Pump Unit	54,901
Driver	38,850
Subtotal 3 Units	281,253
Boxing	
Testing	
Freight	
Accessories	
Total 3 Units	281,253

.../

Proposal No: ELCK2110	05 Item No: ITEM001	MODEL: 3409	M 8x12-27	Page2
Miscellaneous Kynar cyclonic separato	ors (2) -mounted			
Painting Goulds Blue water redu	cible coating (Strathmore)			
Driver: Electric furnished by rating phase/freq/volts insulation/sf	motor Manufacturer: Pump mfg 900.00 hp (671.1 KW) 3/60 Hz/4160 F(1.15	US Electric Mounted by Enclosure Speed FRAME	Pump mfg WP11 1800 RPM 5810MS	
Weights TOTAL NET UNIT WEI	GHT	7390.0/6	Program Version	12.3.0.0

: .

.

.

Ì

Goulds Pumps	BARE PUMP DRAW	ING Model 3409 M 8x12-27	
	23.00		
. 18	11.00 7.00 1.00		
Pump specification	3	Weights and Measur	ements
SUCT.FLANGE SIZE 12"	DRILLING ANSI 250# FACING FF FINIS	SMOOTH PUMP	2940.0 lb
DISCH.FLANGE SIZE 8"	DRILLING ANSI 250# FACING FF FINIS	+ SMOOTH MOTOR/CPLG	4300.0/150.0 lb
PUMP ROTATION (LOOK	ING AT PUMP FROM MOTOR) CH	BASEPLATE	Ib
TYPE OF LUBRICATION	GREASE COO	LED NO TOTAL	<u>7390.0 lb</u>
TYPE OF STUFFING BOX	<u>N/A</u> COO	LED NO GR.VOLUME WBOX	N/A
TTPE OF SEALING PA			CW/N
Motor specificatio	n	Notes and Reference	5
MOTOR BY PUMP MFG	MOUNT BY PUMP MFG MFG. US FUELTRIC		
FRAME SEIONS			j
INSULATION 5	SF 115		1
ENCLOSURE WI-II			i
Auxiliary specifica	ution		
COUPLING BY PUMP M	G CPLG TYPE FALK 1000G G10 1035		
CPL GUARD BY FUMP M	FG. CPLG GUARD MATL STEEL	•Toletence to all pump dimension otherwise specified	13 19 49U.1J II. UMB\$5
BASEPLATE CHANNE	STEEL	FOR PUMP TAPPED OPENINGS R	EFER TO DWG.:
PACKING ACKYLIC YARN IMP	REGNATED WITH PETROLEUM LUBRICANTS AND GRAPHITE		
•	Customer: Serial No: Customer Item No: l' Service: T	C. H. SPENCER and COMPANY P.O. No: FEM001 HICKENER UNDERFLOW	
AB I AB			
AB	wing is not to scale		
All Dr. Wi	wing is not to scale rights (ibs) are approximate DRAWING	NO ELCK211005/ITEM001	<u> </u>

Model:3409	Size:12X	8X27	Group:	60 Hz RPM	:1785	Stages:1
Job/Inqu. No.						
ilser		Issued by:	COURT KIMBALL			
Item/Equip.No:		Quotation No.		Date:		11/26/02
Service:		Order No.		Certifi	ed By:	
	Operating Conditions		Pump Pe	rformance		
Liquid;	Water	Actual Pump Eff.: Actual Pump Pow	er:	Suction Specific Min. Cont. Stabl	: Speed: e Flow:	0 (gpm(US) , ft
Temp.: So Heat	70 " F	Mech. Seal Loss:	0 hp 0 hp	Min. Cont. Therr	mal Flow:	
S.G./Visc.: Flow: TDH:	1.05/1 cp 4000 gpm(US) 549 ft	Other Power Loss Rated Total Power Imp. Dia, First 1	a: 0 hp ∘ ar; Stor	Non-Overloading Imp. Dia. Addt'l	g Power: Stg	181 H P
NPSHa: Req. solid size: % Solids: Vapor Press:	28 ft	NPSHr: Shut off Head:	3	Mag. Drive Circu Max Drive Powe Max Drive Temp Max Motor Size:	uit Flow: Fl C	848 120

Notes: 1. The Mechanical seal increased drag effect on power and efficiency is not included, unless the correction is shown in the appropriate field above. 2. Magnetic drive eddy current and viscous effect on power and efficiency is not included. 3. Elevated temperature effects on performance are not included.

11-17-95

Goulds Pumps

C. H. SPENCER & COMPANY Proposal No: ELCK211005 Item No: ITEM002

Court Kimball C. H. Spencer and Company Elio: Nevade Office 551 Weat Main Street Elio:, Nevada 89801 Pinone:775-753-8088 Fax:775-753-8198

Nov 26, 2002

MODEL:3409 Size: 8x12-27 M QTY: 3

Operating conditions

 SERVICE
 THICKENER UNDERFLOW

 LIQUID
 , SP.GR 1.050

 CAPACITY Norm./Rate
 3000.0 / 3000.0 gpm

 HEAD
 590.0 ft

Performance at 1785 RPM

PUBLISHED EFFY71.0% (CDS)RATED EFFY71.0%RATED POWER661.0 hp (Run out 831.6 hp)NPSHR16.0 (available NPSH is 28.0) (fl)DISCH. PRESSURE268.2 (300.0 @ Shut off) (psi g)PERF.CURVEA-8271-7 (Rotation CW viewed from coupling end)SHUT OFF HEAD660.0 ft

Materials

CONSTRUCTION Cast iron / 316SS CASING Ductile iron max casing pres.@ rated temp 400.0psi g CASING WEAR RING Nitronic 60 316SS - Enclosed (24.2000 rated (in) max=27.0000 min=20.0000) IMPELLER IMPELLER WEAR RING 316SS Vellumoid 505 CASING GASKET 17- 4PH SHAFT SHAFT SLEEVE 316SS LUBRICATION Grease Cast Iron Split GLAND Fulk-1000G G20 1035-COUPLING **COUPLING GUARD** Steel BASEPLATE Channel steel

Sealing Method

PACKING

Acrylic yorn impregnated with petroleum lubricants and graphite

Flanges 250# flat face

Liquid end features Impeller dynamic balance to ISO G6.3

Frame features Inpro VBX Labyrinth Seal

Piping Steel bypass tubing

Baseplate Features Drip Pan with NPT drain connection

PRICES in USD	
Pump Unit	54,901
Driver	37,002
Subtotal 3 Units	275,709
Boxing	
Testing	
Freight	
Accessories	
Total 3 Units	275,709

..../

Proposal No: ELCK211005	Item No: ITEM002	MODEL: 3409	M 8x12-27	Page2
Miscellaneous				
Kynar cyclonic separators	(2) -mounted	:		
Painting				
Goulds Blue water reducib	le coating (Strathmore)			
Driver: Flectric m	otor Manufacturer US F	lectric		
FURNISHED BY Pu	$m_{1} m_{2} m_{2} m_{2} m_{3} m_{3$	MOUNTED BY	Pump m/g	
RATING 90	0.00 hp (67].1 KW)	ENCLOSURE	WPII	
PHASE/FREQ/VOLTS 3/6	60 Hz/4160	SPEED	1800 RPM	
INSULATION/SF F/1	1.15	FRAME	5810SS	
RTD's Yes	7			
SPACE HEATER Ye	\$			
Driver Features				
RTD's				
Space heater				
Waighta		·		
TOTAL NET UNIT WEIGH	4T	7390.01b		
			Grooram Version	300
			Lindiana anternation	
		:		
		:		
		•		

.

Goulds Pumps	BARE PUMP	DRAWING	Model 3409 M 8x12-27
	23.00 - 24.00 0.75x0 KEYWAN LG 14.18 Discharge 14.18 Discharge 1.00 1		
Pump specifical SLICT FLANGE SIZE DISCH,FLANGE SIZE PUMP ROTATION (LO TYPE OF LUBRICATION TYPE OF STUFFING E	IOR 12" DRILLING ANSI 2501 FACING F 8" DRILLING ANSI 2501 FACING F OKING AT PUMP FROM MOTOR) CH IN GREASE IOX N/A ACKING	F FINISH SMOOTH F FINISH SMOOTH COOLED WO COOLED WO	Weights and Measurements PUMP 2940.0 lb MOTOR/CPLG 4300.0/150.0 lb BASEPLATE lb TOTAL 7390.0 lb GR.VOLUME w/BOX N/A GR.WEIGHT w/BOX N/A
Motor specifical Motor by PUMP MF FRAME 581055 PHASE 3 INSULATION F ENCLOSURE WPII	tion G MOUNT BY PUMP MFG MFG. US ELEC POWER 900.00 kp R FREQUENCY 60 Hz V S.F. 1.13	TRIC IPM 1800 /OLTS 4160	Notes and References
Auxiliary specif COUPLING BY PUM CPL GUARD BY PUM BASEPLATE CHAN PACKING ACRYLICYARM	COLION MFG CPLG TYPE FALK 1000G G20 1035 PMFG, CPLG QUARD MATL STEEL NEI, STEEL IMPREGNATED WITH PETROLEUM LUBRICANTS AND GRAF	WITE	-Toleance for all pump dimensions is -10,13 in, unless otherwise specified FOR PUMP TAPPED OPENINGS REFER TO DWG.: TELCK211005/ITEM002
	All dimensions are in inches. Drawing is not to scale Weights (fbs) are approximate	Customer: C. H. SPE Serial No: Customer P.O. No: Item No: ITEM002 Service: THICKENEF DRAWING NO ELC	NCER and COMPANY R UNDERFLOW K211005/ITEM002

Mode):3409	Size:12X	8X27	Group:	60 Hz	RPM:1785	Stages:1
Job/Inqu. No.						
Purchaser:						
User:		Issued by:	COURT KIMBALL			
Item/Equip.No;		Quotation No.			Date:	11/26/02
Service:		Order No.			Certified By:	
	Operating Conditions		Pump Pe	formance	9	
Liquid:	Water	Actual Pump Eff.: Actual Pump Pow	er:	Suction Min. Co	N Specific Speed: Cont. Stable Flow:	0 (gpm(US) , ft
Temp.:	70 °F	Mech. Seal Loss:	0 hp	Min. Co	ont. Thermal Flow:	
Sp. Heat:		Dyn. Seal Loss:	0 hp			
S.G.Nisc.:	1.05/1 cp	Other Power Loss	s: Ohp	Non-O	verioading Power:	
Flow:	3000 gpm(US)	Rated Total Powe		Imp. Di	ia. Addi'i Sig	1741
TDH:	590 R	Imp. Dia. First 1	Stg			6-6-1-
NPSHa:	28 ft	NPSHr:		Mag. D	rive Circuit Flow:	774
Req. solid size:		Shul off Head:		Max Dr	ive Power:	
% Solids:			,	Max Dr	ive lemp:	ର ଦର
Vapor Press:				Max M	diol 2126:	U

Notes: 1. The Mechanical seal increased drag effect on power and efficiency is not included, unless the correction is shown in the appropriate field above. 2. Magnetic drive eddy current and viscous effect on power and efficiency is not included. 3. Elevated temperature effects on performance are not included.

11-17-95

P.O. Box 1089 Colorado Springs, Colorado 80901 Phone: 1-719-471-7200 Fax: 1-719-447-1238 E-mail jimf@rampartsupply.com

Fax

• !

то: А[FABBIT	From	Jim Fry	
Attre				
Fax: 970	1-625-3	165 Pages	3	
Phone:		Date:	11/20/02	
Rei		CC:	·	
🖸 Urgent	🎗 For Review	🗆 Please Comment	🗆 Please Reply	Please Recycle
HI H	HL:			
ENGLISET	> ARE NM	ICES FOR MI	A- (itANGES	ANIS
SAMPLE PIRE -	CALL M	ET READATS	FOR AS3	B ERW
			THANK	nell.
			MILCE T	
		······		

Rampart Supply

Set Al O, L.T.D. EMERT-DIARDS BORDIAN, KOREA BORDIA, KOREA BORDIA, KOREA BORDIA, KOREA BORDIA, KOREA		·//: 7 2
다 강 관 주 석 UNDAI PIPE C BELN ET STER 26687 MANDONE, DUCALLUSANET MANDONE, DUCALLUSANET DEFINIT ENANDOOM, JAR ELL, ROLL		N.N.
A (A)	Partial Control Partial Control 1	NHS RU
KIO NOT EO CERTIFIC	O : 5000 O : 5000 O : 5000 C : 50	
	Procession of the second secon	N.K.
	M E M S I O N X THICK. X LENOTH X THICK. X LENOTH X 1. 200° 200° 200° 100 X 1. 200° 200° 100 X 2. 200° 100	
CALE A A B A CALENDARE NO B A CALENDARE NO B A CALENDARE NO B A CALENDARE A A A A A A A A A A A A A A A A A A		METING SAFEL

· ·

	Paragon Inc	dustriés, in	ل				·			Cent	ificata Numi	Leg d	1305
A MAR	Rt.J Box 33 Sapeipa, 0) Phone: (616 Enu: /6461.5	ilA Idahoma, 7 I) 281-4459 Secondo	4065		MATE	RIAL TE	ST REP	ORT		Cur	tomer PO	·	5719
f Minus East of Stephen, DK	Method and		red in the 1	VS				ł			ufactored b 4 (Type E)	y Electric R	sels lance
Customer	RBSOURCE RIMO FASTO				A -	huci 375 54,62#	AS38/SAS3			Specificatic ASTM A53-4	W BOG		
	HRNDERSO	N, 00 50640	ŧ.							ASME 936.	40M-1896		
Heat Number	Stael Order No.		Yield Strei	ner fan	site Strangth 2	r Elongat in	tion % in 2 Iches	Orlen Led	l Type on/Tensile	Teel G	bnditlen	Gauge	Width
715060	3464		67220		78280		5.5%					0	0
-						61 1 1 1 1 1	1						(
Heal Number	Mill Control	ပ	NW	Δ.	8	S	J	Ź	Mo	ర్	V	A	ы С
715968	Heat	0,200	0.840	0.013	9000	0.013	0.032	0.051	810'0	0.105	0.005	0.025	0.002
	Product	0.189	0.873	0.014	SABAS	0.038	0.041	0.05)	610.0	0.122	0.003	0.023	0.00
TEST / INSPECT	ION			Commen									1
Hydroelatic Yes	K PSI	1120	@ 5 MC3										
Flattening Test		YES											
Littreenie weid	(LUDT)	YES	H0 971.										
Full Length Visi	lau	YES											
Full Length Orth	-	AUA								•			
Heat Treat Alln.	Temperature	1600	degrams	life certify Thimmed	that the prot tangentication	duct describe in soit / or or	ka show has h ini sha shi	been manufu Xomoliance V	ctured, Snap Ath all regula	ied, inspectol Health.		n accortatro partment	
P.MTR.													10/1

ğ

;

FROM-Rampart Supply Industrial MAOE:11 ZO-ZZ-NON

MATERIAL TEST REPORT

Certificate Kumber 7270 Customer PO

i

Menufacturyd ty Electric Recistance wedd Mean m

									4					
	ECHICOLOGY I				Ę	Parts -								
- -	Ling of the second s	MIHAVER N CO MEAN	•		2	12951E X		BLACEB			ASTWAG			
			4		<u> </u>	••					ABLEBOR	1044-1008		-
										•				
Hank Muther	Steel Croke		Yok Sea	nuti tin										
719814			2		2			1		Syse Menulo				STATES -
					051		19.64		SHD Time	the Body	2			
Heat Number	Mill Control	Ċ												
1168/1	1		Į	A	20	30		5	Z	Ma	ð	>		ł
<u> </u>			3	E	Other	ষ্ঠি		1	FUE				2	
The Interaction		3	190		1000	500							1520	22070
	3									1101	19070	5000	6600	1000
Pychostatic Teas	12	2	<u>6</u> 1mg	PER CLEAN		<u>N Ker</u>		•		•				
														•
All Lungth Deb	r .	Į			l									
Plant True Min. T	ambradas	992		No certify I	The Big gao		rod boy	a test bear	manufacto	Ind. Bunda	A human taken			
P.MIN.								the hoom	plence wh	nemper the f			attend in the second	

Same

i

ł

i

ļ

NUV-22-U2	11-30/08	IVON COMPANY COMPLEX COMPLEX	

....

DESCRIPTION	SIZE	QTY	PRICE/FT	TOTAL	
	24"X.250" WALL	85,000	\$17.94	\$1,524,900.00	
AGOD CO ERW PER BIK DRI	24"X 375 WALL	85,000	\$25.19	\$2,141,150.00	
A53B CS ERW PEB BLK DRL	24"X.500 WALL	85,000	\$33.41	\$2,839,850.00	
BOLVETHYLENE HOPE, SDR 11	14"X50'	85,000	\$11.31	\$961,350.00	
POLYETHYLENE, HDPE, SDR 11	18"X50"	85,000	\$18.65	\$1,585,250.00	
POLYETHYLENE, HDPE, SDR 11	18''X50'	22,000	\$18.65	\$410,300.00	
PIPE PRICES ARE FOB: SHIP PT					
ADDITIONS					
POLYETHYLENE, HDPE, SDR 11	20"X50'	85,000	\$23.38	\$1,987,300.00	``
	20"X 375 WALL	85.000	\$20.93	\$1,779.050.00 - 7	dist.
A53B CS ERVY PED BLK DRL	16"Y 275 WALL	42 500	\$14.93	\$634 525.00	••••
A53B CS ERW PEB BLK DKL		42,000	\$12.02	\$553 350 00	
A53B CS ERW PEB BLK DRL	14"X.3/5 WALL	42,000	\$13.UZ	4000,000.00	
PIPE PRICES ARE FOB: SHIP PT					

Al Thabit

.

•

				Pump	Pump	Motor	Price +/-25%	
		Flow	Qty	Pressure rating	Size	HP/RPM	US\$ FOB Fact.	Extended
CASE 1	BASE	9500	13	170	16/14TUAH	1200/1200	\$200,000.00	\$2,600,000
	ALTERNATE	9500	13	500	16/14TUAHP	1200/1200	\$220,000.00	\$2,860,000
CASE 2	BASE	4500	1	170	10/8STAH	400/1200	\$75,000.00	\$75,000

Al Thabit California Dam Project

Case 1 Propenine (r) 84,480 Sand/fails -1012 mercent 30 mercent Sand/fails Case 2 21,120 -312 30 Sand/fails Sand/fails Case 2 21,120 -312 30 Sand/fails Sand/fails Case 2 21,120 -312 30 Sand/fails Sand/fails Solids 35,611 53.5% 30.3% Cv Solids SG CPM HR ER Solids 35,611 53.5% 30.3% 2.65 2,878.8 0.86 0.83 Solids 35,601 53.5% 30.3% 2.65 1,363.6 1 1 Case 2 15,08 53.5% 30.3% 2.65 1,363.6 1 1 Solids 15,09 53.5% 30.3% 2.65 1,363.6 1 1 1 Case 1 31,509 16,166 12.51593 14.862.7 1.05 0.188 2858.0 140 1012 Case 2 9,500.0 2.1486 <th></th> <th>Given:</th> <th></th> <th></th> <th>č</th> <th></th> <th>loiroton</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		Given:			č		loiroton								
CASE 1 TPD CW CV Solids SG GPM HR ER Solids 35,611 53.5% 30.3% 2.655 2,878.8 0.86 0.83 Solids 35,611 53.5% 30.3% 2.655 2,878.8 0.86 0.83 Solids 16,868 53.5% 30.3% 2.65 1,363.6 1 1 1 CASE 2 16,868 53.5% 30.3% 2.65 1,363.6 1 1 1 Solids 14,509 53.5% 30.3% 2.65 1,363.6 1 1 1 CASE 1 9,500.0 84480 16.146 12.51593 14.8627 1.05 0.188 2858.0 140 -1012 CASE 2 4500.0 2.120 14.532 8.2061 8.7047 0.78 0.04 343.3 130 -312		Case 1 Case 2	Pipeline (11) 84,480 21,120	Static (it) -1012 -312	333	-	Sand/tails Sand/tails Sand/tails								
Solids 35,611 53,5% 30.3% 2.65 2,878.8 0.86 0.83 Slurry 66,518 53.5% 30.3% 1.50 9,500.0 0.86 0.83 CASE 2 16,868 53.5% 30.3% 2.65 1,363.6 1 1 1 CASE 2 1509 9,500.0 0.86 0.83 0.83 0.83 Slurry 31,509 53.5% 30.3% 2.65 1,363.6 1 1 1 Flow (gpm) Pipeline (m) Pipe ID (in) Vcl Actual V Fl (fig.) d50 (mm) Friction Head Cractor Static (CASE 1 9,500.0 2.158 1.05 0.188 2.858.0 140 -1012 CASE 2 4500.0 2.146 12.51593 14.88627 1.05 0.188 2.858.0 140 -1012 CASE 2 4500.0 2.135 8.7047 0.78 0.04 343.3 130 -312	CASE 1		i	à		_	Solide SG	Mag	막	ŭ					
CASE 2 CASE 2 1,363.6 1,363.6 1 1 1 Solids 16,868 53.5% 30.3% 2.65 1,363.6 1 1 1 Slury 31,509 53.5% 30.3% 2.65 1.50 4,500.0 1 1 1 Flow (gpm) Pipeline (m) Pipe ID (in) Vcl Actual V Fl (fig.) d50 (mm) Friction Head C Factor Static (CASE 1 9,500.0 84480 16.146 12.51593 14.88627 1.05 0.188 2858.0 140 -1012 CASE 2 4.500.0 21120 14.532 8.82061 8.7047 0.78 0.04 343.3 130 -312	Solids Slurry	35,611 66,518	53.5%	30.3%			2.65	2,878.8 9,500.0	0.86	0.83					
Flow (gpm) Pipeline (m) Vcl Actual V Fl (fig.) d50 (mm) Friction Head C Factor Static (i CASE 1 9,500.0 84480 16.146 12.51593 14.88627 1.05 0.188 2858.0 140 -1012 CASE 2 4.500.0 24480 16.146 12.51593 14.88627 1.05 0.188 2858.0 140 -1012 CASE 2 4.500.0 21120 14.532 8.82061 8.7047 0.78 0.04 343.3 130 -312	CASE 2 Solids Slurry	16,868 31,509	53.5%	30.3%			2.65 1.50	1,363.6 4,500.0	-	~					
CASE 2 4 500.0 21120 14.532 8.82061 8.7047 0.78 0.04 343.3 130 -312	CASE 1	Flow (gpm) 9,500.0	Pipeline (m) 84480	Pipe ID (in) 16.146	Vcl 12.51593	Actual V 14.88627	FI (fig.) 1.05	d50 (mm) 0.188	Friction Head 2858.0	C Factor 140	Static (ft) -1012	TDH 1846.0	Stages 13	feet/stage 142.0	τö
	CASE 2	4,500.0	21120	14.532	8.82061	8.7047	0.78	0.04	343.3	130	-312	31.3	-	31.3	-

Corr. Feet/stage 165.1

31.3

NOTE: Calculated numbers in BLUE. Do not change these numbers or the algorithms will be lost.

Al Thabit California Dam Project

Flow (gpm) Pipeline (m) Pipe ID (in) Vcl Actual V Fl (fig.) d50 (mm) Friction Head C Factor Static (ft) TDH Stages feet/stage CASE 1 9,500.0 84480 16.146 12.51593 14.88627 1.05 0.188 2858.0 140 -1012 1846.0 13 142.0	ASE 2 bolids 16,868 53.5% 30.3% 2.65 1,363.6 ilurry 31,509 1 1 1	olids 35,611 53.5% 30.3% 2.65 2,878.8 ilurry 66,518 0.83 1.50 9,500.0 0.86 0.83	ASE 1 TPD cw cv Solids SG GPM HR ER	Case 2 21,120 -156.86 30 Sand/tails	Given: Pipeline (ft) Static (ft) Cw material Case 1 84,480 -1012 30 Sand/tails	HR 0.86	s feet/stage 142.0	S tages 13	TDH 1846.0	Static (ft) -1012	ER 0.83 140	HR 0.86 1 2858.0 2858.0	GPM 2,878.8 9,500.0 4,500.0 d50 (mm) 0.188	material Sand/fails Sand/fails 2.65 1.50 1.50 1.50 FI (fig.)	Actual V 14.88627	Cw 30 30 20 20 20 20 20 20 20 20 20 20 20 20 20	Static (ft) -1012 -156.86 cv 30.3% 30.3% 30.3% Pipe ID (in) 16.146	Pipeline (ft) 84,480 21,120 53.5% 53.5% 53.5% Pipeline (m) 84480	Given: Case 1 Case 2 35,611 66,518 16,868 31,509 31,509 9,500.0	ASE 1 bolids ilurry SaSE 2 bolids filurry
	Flow (gpm) Pipeline (m) Pipe ID (in) Vci Actual V Fl (fig.) d50 (mm) Friction Head C Factor Static (ft) TDH Stages feet/stage Hi ASE 1 9,500.0 84480 16.146 12.51593 14.88627 1.05 0.188 2858.0 140 -1012 1846.0 13 142.0 0.5	ASE 2 16,868 53.5% 30.3% 2.65 1,363.6 1 1 1 1 1 Uury 31,509 53.5% 30.3% 2.65 1,363.6 1 1.50 4,500.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	olids 35,611 53.5% 30.3% 2.65 2.878.8 lurry 66,518 53.5% 30.3% 1.50 9,500.0 0.86 0.83 ASE 2 1,363.6 1,363.6 lurry 31,509 53.5% 30.3% 2.65 1,363.6 1.50 4,500.0 1 1 1 flow (gpm) Pipeline (m) Pipe ID (in) Vcl Actual V FI (fig.) d50 (mm) Friction Head C Factor Static (ft) TDH Stages feet/stage HR ASE 2 0.188 2858.0 140 -1012 1846.0 13 142.0 0.86	ASE 1 TPD cw cv Solids SG GPM HR ER olids 35,611 53.5% 30.3% 2.65 2.878.8 0.86 0.83 lurry 66,518 53.5% 30.3% 2.65 1,363.6 0.86 0.83 ASE 2 16,66 0.86 0.86 0.86 0.83 1 ASE 2 16,66 1.50 2.65 1,363.6 1 1 1 ASE 2 16,868 53.5% 30.3% 2.65 1,363.6 1 1 1 ASE 1 9,500.0 B4480 16.146 12.51533 14.88627 1.05 0.188 2858.0 140 -1012 1846.0 13 142.0 0.84	Case 2 21,120 -156.86 30 Sandrails ASE 1 TPD cw cv Solids SG GPM HR ER ASE 1 53.5% 30.3% 2.65 2.878.8 0.086 0.85 0.85 Iurry 66,518 53.5% 30.3% 1.50 9,500.0 0.86 0.85 0.83 ASE 2 16,868 53.5% 30.3% 1.50 4,500.0 0.86 0.85 0.83 ASE 2 16,868 53.5% 30.3% 1.50 4,500.0 1.6 1.5 1.55 1.450.0 1.5 1.5 1.55 1.450.0 1.5 1.450.0 1.5 1.450.0 1.5 1.420.0 0.95 ASE 1 9,500.0 84480 16.146 12.51593 14.8627 1.05 0.188 2265.0 1.40 -1012 134.00 1.420.0 0.96	*	142.5	-	142.5	-156.86	140	299.4	0.04	0.78	8.7047	8.82061	14 532	21120	4 500 0	ACE 3

NOTE: Calculated numbers in BLUE. Do not change these numbers or the algorithms will be lost.

,

O outokumpu

<u>Thickener/Clarifier Budget Case Study for Al Thabit</u> Tel. 970 625 3457 Fax. 970 625 3465

Dear AJ,

A summary of our preliminary findings based on information you provided by telephone today is given below:

Case 1.

Underflow rate = 9500 gpm (2160 m3/h) Solids SG = 2.65 Underflow density = 30% by volume = approx. 53% by weight Therefore dry solids rate = approx 1710 mtph (1880 stph)

Feed from dredges approx. 10-15% solids by volume = say 30% by weight Assume all solids reports to underflow therefore feed rate of dry solids = 1880 mtph Feed size d50 = 200 microns, topsize 6 mm (1/4")

Feed rate = calculates to approx. 4635 m3/h (20,400 gpm)

Overflow rate (return water) = approx. 2475 m3/h (10,885 gpm)

Assume settling rate of 2 mt/m2/h Therefore thickener area = 1880/2 = 940 m2and diameter = 35 m (115 ft.)

Budget Price for Supaflo High Rate Thickener complete with elevated tank = USD 850,000 Budget Price for installation (site prep and concrete by others) = USD 400,000 Budget price for flocculant mixing and dosing system = USD 50,000 Rough Estimate for site prep and concrete = USD 400,000

Total = USD 1,700,000 estimate installed.

Case 2.

Underflow rate = 4500 gpm (1020 m3/h)

Ω outokumpu

Solids SG = 2.65 Underflow density = 30% by volume = approx. 53% by weight Therefore dry solids rate = approx 810 mtph (890 stph)

Feed from dredges approx. 10-15% solids by volume = say 30% by weight Assume all solids reports to underflow therefore feed rate of dry solids = 810 mtph

Feed size d50 = 40 microns, topsize 100 microns (0.10 mm) Feed rate = calculates to approx. 2195 m3/h (9658 gpm)

Overflow rate (return water) = approx. 1175 m3/h (5170 gpm)

Assume settling rate of 1 mt/m2/h (for the finer sized feed) Therefore thickener area = 810/1 = 810 m2and diameter = 32 m (105 ft.)

Budget Price for Supafio High Rate Thickener complete with elevated tank = USD 750,000 Budget Price for installation (site prep and concrete by others) = USD 350,000

Budget Price for installation (site prep and concrete by others) = USD 350,000 Budget price for flocculant mixing and dosing system = USD 40,000 Rough Estimate for site prep and concrete = USD 350,000

Total = USD 1,490,000 estimate installed.

Note: Both of the above thickeners are complete with elevated tanks, mechanical components including drive mechanism (40 HP) with automatic rake lift device, rake arms, bridge support, drive and lift controls and instrumentation. <u>Pumps to deliver feed and to remove underflow and recycle water are not included in any of the pricing above.</u>

Please let us know if we can assist you further.

Yours truly,

nepeen

David Green Outokumpu Technology Inc.

Outokumpu Technology Inc., 109 Inverness Dr. E., Suite F Englewood, Colorado 80112

SECTIONAL ELEVATION

. •

;