Ventura County Watershed Protection District Water Resources Division

2021 Annual Report of Groundwater Conditions

Ventura County Watershed Protection District Water Resources Division

MISSION:

"Protect, sustain, and enhance Ventura County watersheds now and into the future for the benefit of all by applying sound science, technology, and policy."

2021 Annual Report of Groundwater Conditions

Cover Photo: Well Drilling in the Upper Ventura River Basin

Ventura County Watershed Protection District Water Resources Division Groundwater Section

2021 Annual Report of Groundwater Conditions

Glenn Shephard, PE, Director

Arne Anselm, Deputy Director

Kimball Loeb, PG, CEG, CHG, Groundwater Manager

James Maxwell, PG, CEG, Groundwater Specialist

Jeff Dorrington, Water Resources Specialist

Travis Moore, Water Resources Specialist

Report Published: 2022

County Government Center Administration Building 800 South Victoria Avenue Ventura, CA 93009-1610 (805) 645-1321(phone) www.vcpublicworks.org/wp

Table of Contents

1.0	Intro	duction	1
	1.1	Geography and County Information	1
	1.2	Population	1
2.0	Cou	nty Well Ordinance	2
	2.1	Permits	2
	2.2	Well Inspections	2
	2.3	Well Inventory and Status	2
3.0	Clim	ate & Precipitation	4
4.0	Grou	undwater	8
	4.1	Groundwater Quality Characterization	10
	4.2	Groundwater Quality Sampling	12
	4.3	Water Quality Standards	14
5.0	Curr	ent Sampling Results by Basin	20
		Arroyo Santa Rosa Valley Basin (DWR Basin No. 4-007)	
		Carpinteria Basin (DWR Basin No. 3-018)	25
		Conejo Basin (DWR Basin No. 4-010)	27
		Cuddy Ranch Area Basin (DWR Basin No. 5-083)	29
		Cuyama Valley Basin (DWR Basin No. 3-013)	31
		Fillmore Subbasin (DWR Basin No. 4-004.05)	33
		Las Posas Valley Basin (DWR Basin No. 4-008)	35
		Las Posas Valley Basin – East Management Area	
		Las Posas Valley Basin – West Management Area	38
		Lockwood Valley Basin (DWR Basin No. 4-017)	
		Mound Subbasin (DWR Basin No. 4-004.03)	
		Ojai Valley Basin (DWR Basin No. 4-002)	
		Oxnard Subbasin (DWR Basin No. 4-004.02)	
		Forebay Management Area	
		Upper Aquifer System (UAS) – Outside Forebay Management Area	
		Lower Aquifer System (LAS)	
		Piru Subbasin (DWR Basin No. 4-004.06)	
		Pleasant Valley Basin (DWR Basin No. 4-006)	
		Santa Paula Subbasin (DWR Basin No. 4-004.04)	
		Hidden Valley Basin (DWR Basin No. 4-016)	
		Simi Valley Basin (DWR Basin No. 4-009)	
		Tapo/Gillibrand Basin	
		Thousand Oaks Area Basin (DWR No. 4-019)	
		Tierra Rejada Valley Basin (DWR Basin No. 4-015)	
		Upper Ojai Valley Basin (DWR Basin No. 4-001)	76

	Ventura River Valley – Lower Ventura River Subbasin (DWR Basin No. 4- 003.02)	
	Ventura River Valley – Upper Ventura River Subbasin (DWR Basin No. 4- 003.01)	
6.0	Groundwater Elevations	82
	Water Level Hydrographs	85
	Spring Groundwater Elevation Changes in Key Wells	85
	Potentiometric Surface Maps	89
	California Statewide Elevation Monitoring Program (CASGEM)	96
7.0	Water Supplies	97
	Groundwater Extractions	
	Wholesale Districts	98
	Surface Water	102
	Surface & Imported Water Demands	104
8.0	Sustainable Groundwater Management Act (SGMA)	106
	Critically Overdrafted Basins	
	High & Medium Priority Basins in Ventura County	108
	Adjudicated Basins	110
	Groundwater Sustainability Agencies (GSA's)	111
Refe	erences	113
	endices	
••	Appendix A – Glossary of Groundwater Terms	
	Appendix B – Key Water Level Hydrographs	
	Appendix C – Groundwater Level Measurement Data	
	Appendix D – Water Quality Section	
	Appendix E – Piper Diagrams	
	Appendix F - Basin Summary Sheets	

List of Figures

Figure 3-1: Water Year 2021 Precipitation and Normal Precipitation Totals	4
Figure 3-2: Average Annual Rainfall for Ventura County	5
Figure 3-3: Precipitation Maps of Wet Years.	6
Figure 3-4: Precipitation Maps of Water Years 2020 and 2021	7
Figure 4-1: Ventura County Groundwater Basins Map	9
Figure 4-2: Example of a Piper Diagram	10
Figure 4-3: Piper Diagram With Water Types.	11
Figure 4-4: Example of Stiff Diagram	12
Figure 4-5: Location of Wells Sampled in Northern Half of the County	13
Figure 4-6: Location of Wells Sampled in Southern Half of the County	14
Figure 5-1: Arroyo Santa Rosa Basin wells sampled with Stiff diagrams and selected inorganic analyses.	
Figure 5-2: Arroyo Santa Rosa Basin nitrate concentrations for 2021	
Figure 5-3: Arroyo Santa Rosa nitrate concentrations for 2012 – 2021	24
Figure 5-4: Carpinteria Basin sampled wells with Stiff diagrams and selected inorganic analyses.	
Figure 5-5: Conejo Basin sampled wells with Stiff diagrams and selected inorganic analyses	28
Figure 5-6: Cuddy Ranch Area Basin sampled wells with Stiff diagrams and selected inorgan analyses.	ic 30
Figure 5-7: Cuyama Valley Basin sampled wells with Stiff diagrams and selected inorganic analyses.	32
Figure 5-8: Fillmore Subbasin wells sampled with Stiff diagrams and selected inorganic analyses.	34
Figure 5-9: Las Posas Valley Basin EMA, sampled wells with Stiff diagrams and selected inorganic analyses.	37
Figure 5-10: Las Posas Valley Basin WMA sampled wells with Stiff diagrams and selected inorganic analyses.	39
Figure 5-11: Lockwood Valley Basin	41
Figure 5-12: Mound Subbasin	43
Figure 5-13: Ojai Valley Basin sampled wells with Stiff diagrams and selected inorganic	
analyses.	
Figure 5-14: Oxnard Subbasin Forebay Management Area.	
Figure 5-15: Oxnard Subbasin Oxnard Aquifer sampled wells with Stiff diagrams and selected inorganic analyses.	
Figure 5-16: Oxnard Subbasin Mugu Aquifer sampled wells with Stiff diagrams and selected inorganic analyses.	
Figure 5-17: Oxnard Subbasin Oxnard & Mugu Aquifers cross screened sampled wells with S diagrams and selected inorganic analyses.	
Figure 5-18 Oxnard Subbasin Hueneme Aquifer sampled wells with Stiff diagrams and selecter inorganic analyses.	
Figure 5-19 Oxnard Subbasin Fox Canyon Aquifer sampled wells with Stiff diagrams and selected inorganic analyses.	54

Figure 5-20 Oxnard Subbasin Hueneme and Fox Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic analyses	.56
Figure 5-21 Oxnard Subbasin Hueneme, Fox Canyon and Grimes Canyon Aquifers cross	
screened sampled wells with Stiff diagrams and selected inorganic analyses.	.58
Figure 5-22: Piru Basin sampled wells with Stiff diagrams and selected inorganic analyses	.60
Figure 5-23: Pleasant Valley Basin sampled wells with Stiff diagrams and selected inorganic analyses.	.63
Figure 5-24: Santa Paula Subbasin sampled wells with Stiff diagrams and selected inorganic analyses.	
Figure 5-25: Hidden Valley Basin sampled wells with Stiff diagrams and selected inorganic analyses.	.67
Figure 5-26: Simi Valley Basin sampled wells with Stiff diagrams and selected inorganic analyses.	.69
Figure 5-27: Tapo/Gillibrand Basin	.71
Figure 5-28: Thousand Oaks Area Basin	.72
Figure 5-29: Tierra Rejada Basin sampled wells with Stiff diagrams and selected inorganic analyses.	.74
Figure 5-30: Tierra Rejada Basin location of sampled wells and nitrate concentrations	.75
Figure 5-31: Upper Ojai Basin sampled wells with Stiff diagrams and selected inorganic analyses.	.77
Figure 5-32: Ventura River Valley – Lower Ventura River Subbasin sampled well with Stiff diagram and selected inorganic analyses	.79
Figure 5-33: Ventura River Valley – Upper Ventura River Subbasin sampled well with Stiff diagram and selected inorganic analyses	.81
Figure 6-1: Water level wells measured in the northern half of the County	.83
Figure 6-2: Water level wells measured in the southern half of the County	.84
Figure 6-3: Hydrograph showing the groundwater elevation through time for Well No. 01N21W02J02S, located in the Pleasant Valley Basin	.85
Figure 6-4: Key water level wells in Ventura County	.86
Figure 6-5: Santa Clara River Valley Spring 2016.	.90
Figure 6-6: Santa Clara River Valley Fall 2016	.91
Figure 6-7: Upper Aquifer System Spring 2016	.92
Figure 6-8: Upper Aquifer System Fall 2016	.93
Figure 6-9: Lower Aquifer System Spring 2016.	.94
Figure 6-10: Lower Aquifer System Fall 2016	.95
Figure 7-1: Groundwater Management Agencies in Ventura County	.97
Figure 7-2: Wholesale Water District Boundary Map.	
Figure 7-3: Graph of Precipitation versus Recharge by UWCD1	01
Figure 7-4: Surface water storage and diversion map ^{11, 12, 13} 1	
Figure 8-1: Critically overdrafted basins in Ventura County1	07
Figure 8-2: 2019 Final SGMA B118 basin prioritization1	09

List of Tables

Table 2-1: Inventory and Status of Wells	2
Table 4-1: Primary Maximum Contaminant Levels for Title 22 Metals.	16
Table 4-2: Primary Maximum Contaminant Levels for Radionuclides	18
Table 4-3: Secondary Maximum Contaminant Levels	19
Table 5-1: Example of summary table	20
Table 5-2: Selected water quality results for the Arroyo Santa Rosa Valley Basin	21
Table 4-3: Selected water quality results for the Carpinteria Basin.	25
Table 4-4: Selected water quality results for the Conejo Basin.	27
Table 4-4: Selected water quality results for the Conejo Basin.	29
Table 4-5: Selected water quality results for the Cuyama Valley Basin.	31
Table 4-6: Selected water quality results for the Fillmore Subbasin	33
Table 4-7: Selected water quality results for the Las Posas Valley Basin – East Management Area.	36
Table 4-8: Selected water quality results for the Las Posas Basin - West Management Area.	
Table 4-9: Selected water quality results for the Lockwood Valley Basin	
Table 4-10: Selected water quality results for the Mound Subbasin.	
Table 4-11: Selected water quality results for the Ojai Valley Basin.	
Table 4-12: Selected water quality results for the Oxnard Subbasin Forebay Management Are	
Table 4-13: Selected water quality results for wells screened in the Oxnard Aquifer	
Table 4-14: Selected water quality results for wells screened in the Mugu Aquifer	
Table 4-15: Selected water quality results for wells screened across the Oxnard & Mugu Aquifers.	
Table 4-16: Selected water quality results for wells screened in the Hueneme Aquifer	
Table 4-17: Selected water quality results for wells screened in the Fox Canyon Aquifer	
Table 4-18: Selected water quality results for wells screened across the Hueneme & Fox Canyon Aquifers.	
Table 4-20: Selected water quality results for wells screened across the Hueneme, Fox Cany	/on
& Grimes Aquifers	
Table 4-21: Selected water quality results for the Piru Subbasin. Table 4-21: Selected water quality results for the Piru Subbasin.	
Table 4-22: Selected water quality results for the Pleasant Valley Basin Table 4-22: Selected water quality results for the Pleasant Valley Basin	
Table 4-23: Selected water quality results for the Santa Paula Subbasin. Table 4-24: Selected water quality results for the Santa Paula Subbasin.	
Table 4-24: Selected water quality results for the Carpinteria Basin. Table 4-25: Selected water quality results for the Carpinteria Basin.	
Table 4-25: Selected water quality results for the Simi Valley Basin Table 4-20: Selected water quality results for the Simi Valley Basin	
Table 4-26: Selected water quality results for the Simi Valley Basin Table 4-26: Selected water quality results for the Simi Valley Basin	
Table 4-27: Selected water quality results for the Tierra Rejada Valley Basin. Table 4-28: Selected Water Quality Desults for the Upper Qiai Design	
Table 4-28: Selected Water Quality Results for the Upper Ojai Basin. Table 4-28: Selected water quality results for the Lower Venture Diver Subbasin	
Table 4-29: Selected water quality results for the Lower Ventura River Subbasin. Table 4.29: Selected water quality results for the Longer Venture River Subbasin.	
Table 4-30: Selected water quality results for the Upper Ventura River Subbasin. Table 5.1: Key water level changes in fact below ground surface for 2021	
Table 5-1: Key water level changes in feet below ground surface for 2021. Table 7.1: Croundwater extractions within reporting agencies 2012 through 2021.	
Table 7-1: Groundwater extractions within reporting agencies 2012 through 2021, ¹²	.98

Table 7-2: Precipitation versus recharge volume for UWCD	100
Table 7-3: Wholesale Water District Deliveries 2007-2016 Main Main	102

Executive Summary

Groundwater is the primary water source in Ventura County, providing approximately 63% of the total water for domestic, agricultural and industrial uses. Agricultural use accounts for the majority of groundwater consumption. The County provides protection for groundwater quality and supply through Well Ordinance No. 4468 by regulating the construction, maintenance, use and destruction of wells and engineering test holes (soil borings) in such a manner that the groundwater of the County will be of beneficial use without jeopardizing the health, safety or welfare of the people of Ventura County.

Water year 2021 saw average rainfall throughout the County. In January, the County was designated as an area of no drought but by the end of the year the designation had been changed by the U.S. Drought Monitor (<u>http://droughtmonitor.unl.edu</u>) to an area of moderate drought. The continued drought along with regulatory constraints led to a decrease in surface water releases and diversions. When less surface water is available, local groundwater demand increases. After continued drought conditions but with areas of average precipitation, groundwater elevations were mostly mixed compared with the previous spring. Nine of the key well levels had increased and seven showed a continuing decline.

Water quality trends within County basins were generally unchanged from previous years. Key water quality concerns in some basins continue to be high concentrations of total dissolved solids (TDS) and nitrate; both exceeding the maximum contaminant level (MCL) in localized areas within specific basins. Basin summary sheets included in the appendices include analyses of water level and water quality trends over a five-year period.

The County of Ventura does not regulate groundwater extractions. Reporting of extractions are regulated by two groundwater management agencies (GMAs) and a water conservation district in specific areas of the County: the Ojai Basin Groundwater Management Agency (OBGMA), the Fox Canyon Groundwater Management Agency (FCGMA), and United Water Conservation District (UWCD). These agencies cover approximately 8% of the land area in Ventura County. Well owners and operators within the statutory boundaries of an agency are required to report extractions to their respective agencies. Groundwater extractions outside of these boundaries are often unreported with total County-wide extractions unknown.

Several basins within the County have been designated as critically overdrafted by the California State Department of Water Resources (DWR). The Sustainable Groundwater Management Act (SGMA), which became effective in 2015, required Groundwater Sustainability Agencies (GSAs) be formed in all DWR-designated high and medium priority basins. GSAs exist in all high and medium priority basins within the County and are working (as of Dec. 2021) to develop, or have submitted, Groundwater Sustainability Plans (GSPs) to manage groundwater supplies. On November 22, 2021, the Department of water Resources approved the Fox Canyon Groundwater Management Agency Groundwater Sustainability Plans covering Oxnard and Pleasant Valley Basins. In 2014, the County passed Emergency Ordinance No. 4466. Section 4826.1 - Water Well and Water Well Permit Prohibitions (known as the Well Moratorium) temporarily bans, with some exceptions, issuance of permits for construction, modification or repair of existing wells. The emergency ordinance was established to protect groundwater after a spike in new well application submittals following SGMA legislation. The Well Moratorium will expire in a basin when its respective GSA submits the required GSP to the DWR. Some basins or areas may still be subject to new well moratoriums put in place by local agencies and cities.

This report provides a summary of Calendar Year 2021 water quality and groundwater elevations for the groundwater basins of Ventura County.

1.0 Introduction

The Ventura County Watershed Protection District (VCWPD) was formed on September 12, 1944, as the "Ventura County Flood Control District." Since 2003, it has been known as the VCWPD. The Groundwater Resources Section is part of the VCWPD and has collected groundwater data since 1928. Historically, groundwater data was published in Triennial or Quadrennial reports in a collaborative effort with the Flood Control District, Hydrology Section. The last such report was published in December 1986 and covered the years 1981 through 1984. Between 1985 and 2004, Groundwater Resources drafted several unpublished Groundwater Conditions Reports. In 2006, Groundwater Resources published its first *Groundwater Quality Report* for the years 2005 and 2006. The current report, *2021 Annual Report of Groundwater Quality Conditions*, is the 16th consecutive publication.

The purpose of this report is to provide information on groundwater conditions in Ventura County and to publish the results of the quarterly groundwater elevation measuring of approximately 200 wells and Fall groundwater quality sampling of water supply wells.

This report is prepared annually due to changing groundwater conditions and fluctuating seasonal conditions. Basin summary sheets in Appendix F provide a single-page summary of water level and quality trends along with other key data over a five-year period. Detailed water quality and water level data are presented for each basin. Laboratory analytical results and supporting data are included in the appendices.

Geography and County Information

Ventura County was formed on January 1, 1873, when it separated from Santa Barbara County and became one of 58 counties in the State of California. Geographically, the county includes 42 miles of coastline and the Los Padres National Forest, situated in the northern portion of the County, which accounts for 46% of the County's area. Fertile valleys and plains in the southern half of the County make it a leading agricultural producer. The County was ranked eleventh among California counties in total crop value in 2019¹ and eleventh among all Counties in the United States². Together, farming and the Los Padres National Forest occupy half of the County's 1.2 million acres.

Population

The unincorporated areas, along with the ten incorporated cities of Camarillo, Fillmore, Moorpark, Ojai, Oxnard, Port Hueneme, Santa Paula, Simi Valley, Thousand Oaks, and San Buenaventura (Ventura), rank Ventura as the 13th most populous county in the State. On May 7, 2021, the California State Department of Finance estimated Ventura County's population to be 835,223, a decrease of 0.7 percent over the revised 2020 population estimate of 842,886. The City of Fillmore had the largest estimated percentage increase in population (1.6) while the City of Port Hueneme had a decrease of 1.4 percent over the previous year. Ventura County's population is expected to exceed 870,000 by the year 2030.

¹ California Department of Food and Agriculture *California Agricultural Statistics Review 2019-2020*

² Farm Bureau of Ventura County

2.0 **County Well Ordinance**

The first County Water Well Ordinance was adopted by the Ventura County Board of Supervisors in 1970 and has since undergone six revisions. The current Well Ordinance was last updated in December 2014 (No. 4468) to better align with SGMA.

The Well Ordinance provides for protection of groundwater quality and supply so that groundwater will be suitable and sustainable for beneficial use and not jeopardize the health of the people of Ventura County. This includes issuing well permits and inspecting the installation and destruction of wells. Quarterly water level measurements, annual water quality sampling, groundwater basins condition reporting, review of development projects, and provision of water quality and well information are carried out to better support the purpose of the Well Ordinance.

Permits

Permits are required for construction, repair, and destruction of groundwater wells, cathodic protection wells, monitoring wells, and geotechnical borings (engineering test holes). Permits are required to ensure wells and borings are constructed and sealed per California DWR Well Standards. Permits are issued throughout the County, except within the City of Oxnard which issues well permits within its city boundaries. A total of 90 permits for wells and engineering test holes were conditioned and issued during calendar year 2021.

Well Inspections

Per the Well Ordinance, well seals are inspected for each water supply well installation or destruction, cathodic protection well installation or destruction, and major modifications or repairs to existing water supply wells. A total of 38 inspections were performed in 2021.

Well Inventory and Status

The Groundwater Section maintains records in a database to make it more convenient to verify well locations, determine the well status (active, abandoned, destroyed), document well use (agricultural, domestic, municipal, cathodic protection), track well ownership, and verify parcel/ownership information.

The database contains details for various types of wells including water supply, long-term monitoring, cathodic protection wells and springs. Well information is organized and stored in the database by state well number. At the end of 2021 there were 9,366 well records in the database in the categories listed in **Table 2-1**.

2021 Status	Number
Active	4,149
Abandoned	460
Can't Locate	1,830
Non-Compliant	53
Non-Compliant Abandoned	114
Destroyed	2,750
Exempt	10

Table 2-1: Inventory and Status of Wells

• <u>Active</u> wells meet or exceed the minimum requirement of 8 hours pumping per calendar year as described in the County of Ventura Well Ordinance No. 4468.

- <u>Abandoned</u> wells do not meet the 8-hour minimum pumping requirement or are in a condition that no longer allows the well to be used.
- <u>Can't Locate</u> wells are usually old rural wells for which the Groundwater Section has historic well location data, but the locations may now be in areas that have subsequently been developed. There are several reasons why a well may be listed as "Can't Locate." The current owner of the property may be unaware of the existence of a well on their property or a County approved search has been conducted and no well has been found.
- <u>Non-Compliant</u> wells are generally active wells for which the responsible party failed to respond to written communication from the Groundwater Section.
- <u>Non-Compliant Abandoned</u> wells are classified as such when a well owner has failed to respond to written communication from the Groundwater Section to take action on an inactive well. The Well Ordinance prohibits anyone from owning an abandoned well. Abandoned wells pose a physical safety risk and may act as a potential conduit for contaminants to reach groundwater.
- <u>Destroyed</u> wells are wells that have been properly destroyed under permit.
- <u>Exempt</u> wells have been found to be in good enough condition to remain inactive for a period of five years before being re-activated or re-inspected. To be listed as exempt, a well inspection report from a licensed professional geologist or civil engineer must be submitted by the well owner to the Groundwater Section for review and approval.

3.0 Climate & Precipitation

The mean annual daily air temperature for 2021 at the National Weather Service Oxnard area office was 61.7 degrees Fahrenheit (°F), with an average maximum high of 71.3 °F and an average minimum low of 52.0 °F³. The average annual rainfall, countywide was approximately 16.8 inches⁴ for the 2021 water year⁵. Throughout the County, precipitation for the 2021 water year was less than 100% of normal. Moorpark received 95% of normal, while the Matilija Dam area received 73% of the normal rainfall total. **Figure 3-1** shows water year 2021 received rainfall totals and normal precipitation totals for that gauge/area. Averages are determined from the 1957-1992 base period, as this is a 35-year period that is representative of the long-term average for multiple sites in Ventura County⁶. **Figure 3-2** depicts average rainfall for the periods 2002 to 2021 for all of Ventura County. **Figure 3-3** shows a generalized distribution of rainfall across the County for water years with more precipitation (2010 and 2011) and **Figure 3-4** shows rainfall distribution for the last two water years (2020 and 2021).

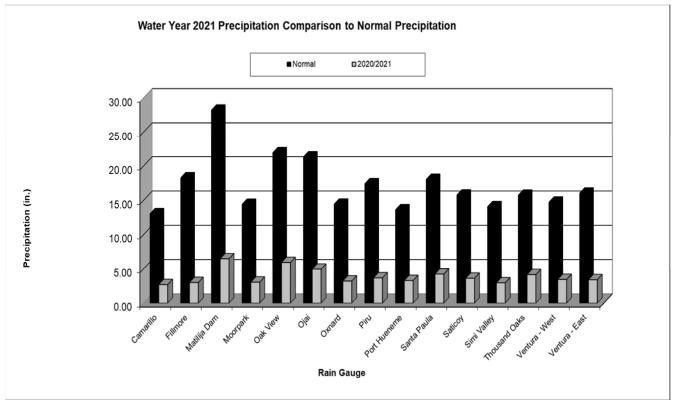


Figure 3-1: Water Year 2021 Precipitation and Normal Precipitation Totals

³ Based on *preliminary* data from the National Climatic Data Center <u>http://www.ncdc.noaa.gov</u>.

⁴ Based on *preliminary* data from all active rain gauges.

⁵ Water Year defined as: October 1 to September 30 of the following year. VCWPD precipitation data is *preliminary* and subject to change.

⁶ According to the Ventura County Hydrology Section's Historic Rainfall webpage.

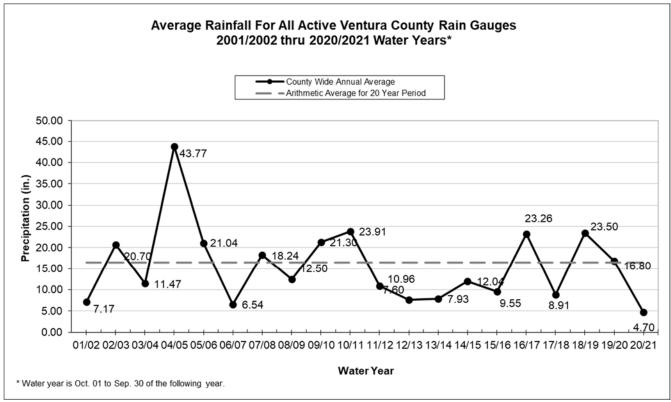
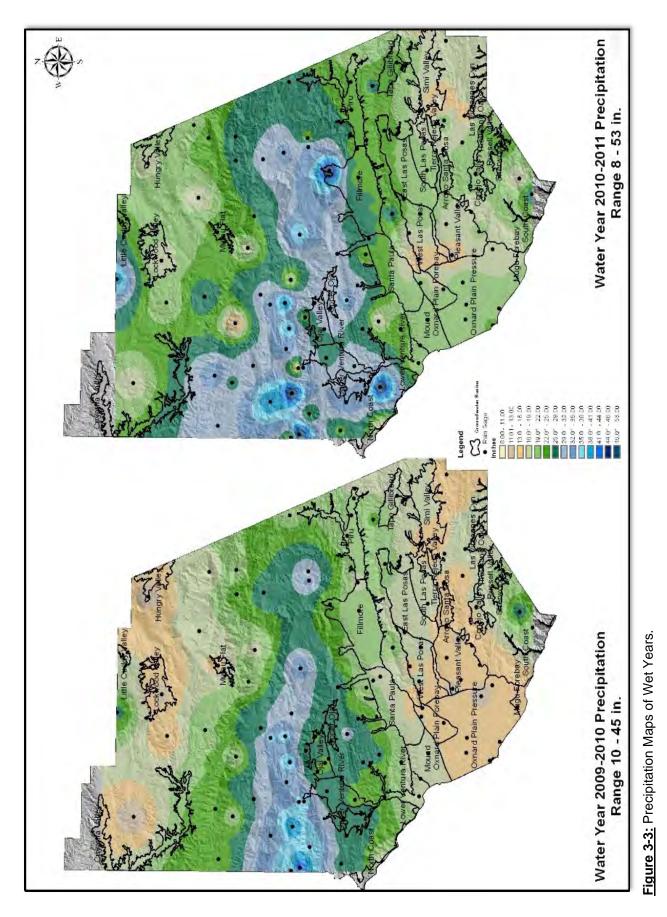
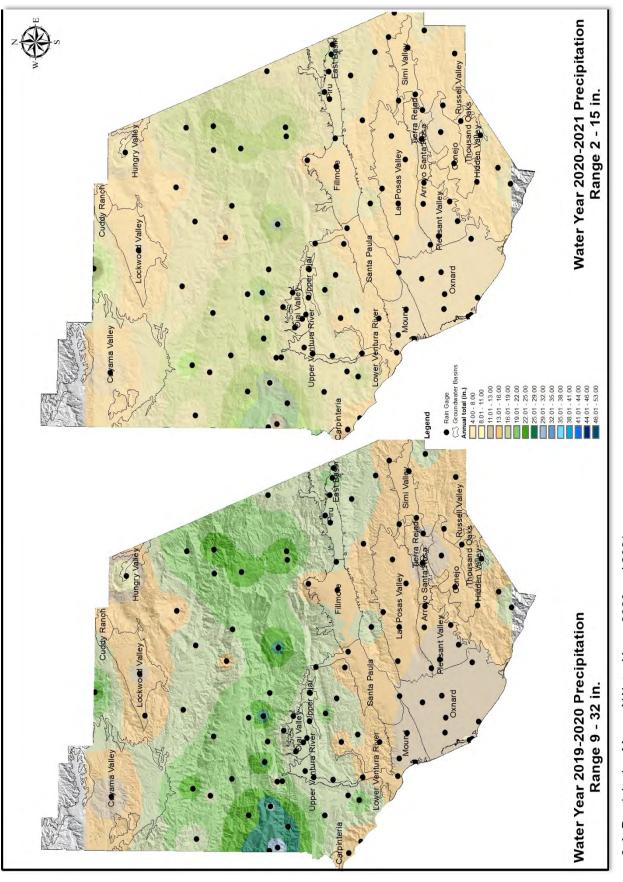
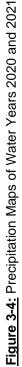





Figure 3-2: Average Annual Rainfall for Ventura County.

4.0 Groundwater

Groundwater is the primary source of water in Ventura County and accounts for approximately 63% of the total County water demand. Most accessible groundwater is found in the 28 groundwater basins and subbasins within the County (**Figure 4-1**). Groundwater basins in the northern half of the County do not join directly with other basins, while some groundwater basins in the southern half of the County are hydrologically continuous on the surface and in the subsurface to varying degrees.

The 23 basins and subbasins in the southern half of the County contain the largest groundwater reserves. These larger basins contain multiple confined and unconfined aquifers that can vary in thickness from ten to hundreds of feet. The aquifers are separated by relatively impermeable clay layers (aquitards) that create confined groundwater conditions. Detailed basin descriptions are provided in their respective section.

The Groundwater Resources Section of the VCWPD, the UWCD, individual water purveyors, and to a lesser extent the United States Geological Survey (USGS), all collect data to provide information regarding groundwater conditions within the County. Groundwater recharge occurs naturally from infiltration of rainfall and river/streamflow, artificially through injection of imported State Water Project water from Metropolitan Water District via Calleguas Municipal Water District (Calleguas) and spreading of diverted Santa Clara River water into recharge basins by UWCD.

Known groundwater extraction data within certain basins is presented later in this report and along with extraction estimations from other basins.

In annual reports prior to 2018 basin boundaries were delineated by the County of Ventura. After 2018 defined groundwater basins as shown in Department of Water Resources (DWR) Bulletin 118 (B118) are used for the Annual Report. DWR Bulletin 118 basin boundaries are used to align with other agencies and avoid confusion.

Basin sampling results are presented in alphabetical order by B118 basin name.

Figure 4-1: Ventura County Groundwater Basins Map

Groundwater Quality Characterization

Groundwater contains a variety of chemical constituents of varying concentrations. As water flows through an aquifer it acquires chemical compounds through interactions with surrounding alluvium or bedrock. For most groundwater, 95% of ions present are represented by a few major species. Positively charged cations include sodium (Na⁺), potassium (K⁺), calcium (Ca²⁺), magnesium (Mg²⁺). Negatively charged anions include chloride (Cl⁻), carbonate (CO₃²⁻), bicarbonate (HCO₃⁻), and sulfate (SO₄²⁻). These ionic species when added together account for most of the salinity that is commonly referred to as total dissolved solids (TDS). The Annual Report uses Piper and Stiff diagrams for the basic chemical characterization of groundwater.

Piper Diagram

A Piper diagram is a graph used to visualize the chemistry of a water sample. The diagram is comprised of three parts: a ternary diagram in the lower left representing the positively charged ions (cations), a ternary diagram in the lower right representing the negatively charged ions (anions), and a diamond plot in the middle representing a combination of the two (**Figure 4-2**). The diamond-shaped field between the triangles is used to represent the composition of water with respect to its anions and cations.



Figure 4-2: Example of a Piper Diagram

In the example diagram in **Figure 4-2** the cations plot in the mixed zone in the lower left triangle and the anions plot in the sulfate zone in the lower right triangle. The plotted points are projected onto the diamond-shaped center field and show that the water is calcium sulfate type.

Groundwater samples are interpreted as illustrated in Figure 4-3:

- top quadrant: calcium sulfate waters typically associated with gypsum and mine drainage
- <u>left quadrant</u>: calcium bicarbonate waters typically shallow, fresh groundwater
- right quadrant: sodium chloride waters typically marine and ancient groundwater
- <u>bottom quadrant</u>: sodium bicarbonate waters typically deep groundwater influenced by ion exchange

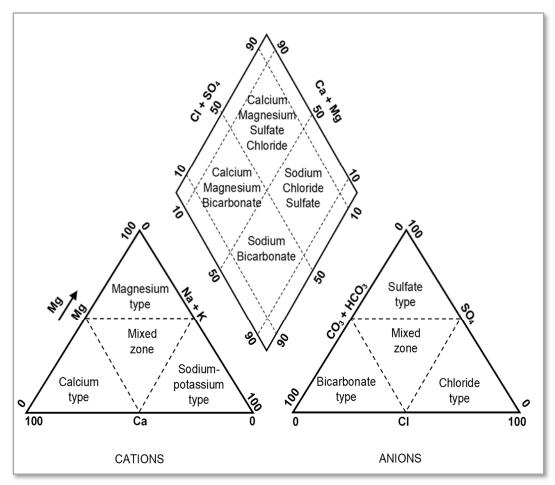


Figure 4-3: Piper Diagram with Water Types.

Figure 4-3 shows how a Piper diagram is used to characterize water quality. By grouping the anions (Cl⁻, $CO_3^{2^-}$, HCO_3^{-} , and $SO_4^{2^-}$) into one group and cations (Na⁺, K⁺, Ca²⁺, Mg²⁺) into another group, the concentration of each anion and cation group can be calculated. The concentration of each anion or cation group in a sample is then converted to milliequivalents/L (meq/L) and then normalized on a percentage scale. The percent concentrations are then plotted on the lower ternary diagrams. The position of the points is projected parallel to the magnesium and sulfate axes, respectively, until they intersect in the center field (Fetter, 1988).

Piper diagrams for each basin are in Appendix E.

Stiff Diagram

A second method to present water quality results is through a Stiff diagram (**Figure 4-4**). The same cations and anions that are plotted in the piper diagrams are shown in the Stiff diagrams. The ions are plotted on

either side of a vertical axis in milliequivalents per liter (meq/L), cations on the left of the axis and anions on the right. The polygonal shape created is useful in making a quick visual comparison of different water samples as waters with similar characteristics will display a similar shape. Stiff diagrams for wells sampled in 2021 are plotted on their respective basin map.

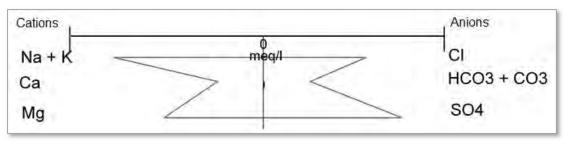


Figure 4-4: Example of Stiff Diagram.

Groundwater Quality Sampling

Water quality data is collected to assess groundwater quality within the County groundwater basins. Groundwater staff also work with and share groundwater quality data with other organizations and agencies in the County to maintain consistency in the countywide groundwater quality monitoring program. The data is also used by stakeholders, consultants, and other professionals. Water quality data is publicly available upon request by contacting the Watershed Protection District, Groundwater Resources Section.

Efforts are made to sample the same wells each year and add additional wells as time and budget allow. Wells sampled in the northern half of the County are shown in **Figure 4-5**. Wells sampled in the southern half of the County are shown in **Figure 4-6**.

Groundwater staff sampled a total of 183 water supply wells throughout the County in 2021. Well sampling procedures are outlined in the Groundwater Section's Groundwater Quality Sampling Plan. Well owners are provided a copy of the laboratory analytical report and notified if any of the constituents analyzed exceed the State and Federal established maximum contaminant levels (MCLs) for drinking water.

Laboratory analyses are conducted by Fruit Growers Laboratory in Santa Paula, a laboratory certified under the State Environmental Laboratory Accreditation Program. All water samples from wells were analyzed for general minerals, seven wells for Gross Alpha, and a random subset of 79 wells was selected for analysis of California Title 22 metals.

Water quality sampling results are included in **Appendix D**. Care should be taken when comparing data from past reports because wells sampled may vary annually. General interpretations of quality data are detailed in the following subsections.

Additional groundwater quality data is available from other sources, such as water districts and other agencies that collect and analyze groundwater. Organic groundwater chemistry data is also available for some areas of the County through the State Water Quality Control Board's Geotracker website for environmental cleanup sites

(https://geotracker.waterboards.ca.gov/).

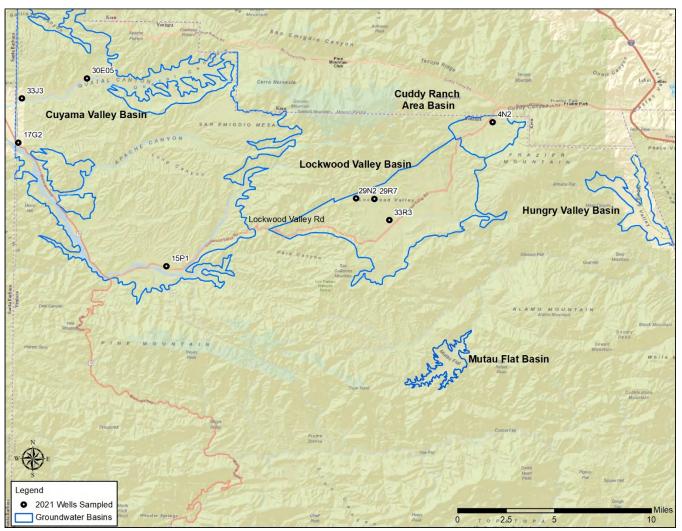


Figure 4-5: Location of Wells Sampled in Northern Half of the County.

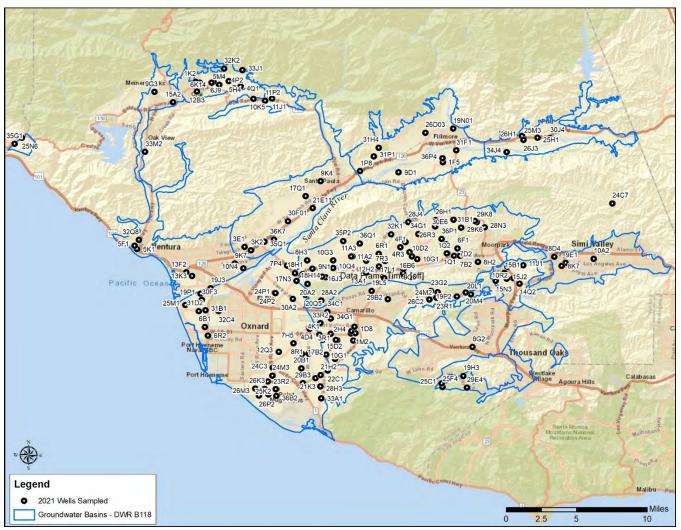


Figure 4-6: Location of Wells Sampled in Southern Half of the County.

Water Quality Standards

The Groundwater Resources Section uses Water Quality Standards established by the Los Angeles Regional Water Quality Control Board (LARWQCB) for assessing groundwater quality in Ventura County. Water Quality Standards provide for the reasonable protection and enhancement of surface and groundwater and consist of beneficial use and water quality objectives as mandated by the California Water Code (§13241).

LARWQCB developed twenty-four defined beneficial uses, all of which are compiled in the *Basin Plan for the Coastal Watersheds of Los Angeles and Ventura County* (Basin Plan). Water quality objectives protect public health by maintaining or enhancing existing or potential beneficial uses of water. The chart on the following page is an excerpt from the Basin Plan that shows the beneficial uses of groundwater for all basins in Ventura County.

The Basin Plan specifies Ventura County's narrative and numerical Water Quality Standards for groundwater and incorporates Title 22, California Code of Regulations (CCR) standards for groundwater by reference. These are referred to as primary MCLs. A primary MCL is the highest concentration of a contaminant allowed in drinking water that can be present without any adverse health effects. Primary

MCLs developed by the State meet or exceed the United States Environmental Protection Agency (EPA) standards and are legally enforceable standards.

DWR ^{ad} BASIN Basin No.	MUN	IND	PROC	AGR	AQUA	DWR ^{ad} Basin No.	BASIN	MUN	IND	PROC	AGR	AQU
PITAS POINT AREA ^{ae}	E	E	Р	E		4-6	PLEASANT VALLEY ^{ag}					
4-1 UPPER OJAI VALLEY	E	E	E	E			Confined aguifers	E	E	E	E	
4-2 LOWER OJAI VALLEY-OJAI VALLEY	E	E	E	E			Unconfined and perched aquifers	Р	E	E	E	1
4-3 VENTURA RIVER VALLEY						4-7	ARROYO SANTA VALLEY ^{ag}	E	E	E	E	
4-3.01 Upper Ventura	E	E	E	E			LAS POSAS VALLEY ^{ag}	F	F	F	F	
4-3.02 Lower Ventura	P	E	P	E			SIMI VALLEY	-	-	-	-	
4-4 SANTA CLARA RIVER VALLEY ^{af}	<u> </u>	-					Simi Valley Basin					-
4-4.02 Oxnard							Confined aguifers	F	F	F	F	-
4-4.02 Oxnard Forebay	E	E	E	E			Unconfined aguifers	F	E	E	F	
Confined aguifers	E	E	E	E			Gillibrand Basin	F	F	p	F	-
Unconfined and perched aquife	-	Р		E		4-10	CONEJO VALLEY	F	F	F	F	
4-4.03 Mound				-		4-15	TIERRA REJADA	F	P	P	F	
Confined aguifers	E	E	E	E		-	HIDDEN VALLEY	E	P	<u> </u>	E	
Unconfined and perched aguife	-	Р	-	E		4-17	LOCKWOOD VALLEY	F	F		F	
4-4.04 Santa Paula		· ·		-		4-18	HUNGRY VALLEY	F	P	F	F	
East of Peck Road	E	E	E	E			THOUSAND OAKS AREA ^{aj}	F	F	F	F	
West of Peck Road	E	E	E	E			RUSSELL VALLEY	с с	D		с с	-
		L	L	L			CONEJO-TIERRA REJADA VOLCANIC ^{ak}	с.	r		г.	-
4-4.05 Fillmore	E	E	E	E		4-21	CONEJO-TIERRA REJADA VOLCANIC	E			E	L
Pole Creek Fan area	E	E	E	E								
South side of Santa Clara River	E	E	E	E	E							
Remaining Fillmore area	P	E	P	E	E							
4-4.06 Piru	P	C.	P	E								
Upper area (above Lake Piru)	Р	E	E	E								
Lower area east of Piru Creek	E	E	E	E								
Lower area west of Piru Creek	E	E	F	E								
Footnotes are consistent for all beneficial use tables.	ac: Benefic	ial uses for grou	und waters ou	tside of the m			d in Fig 1-9 have not been specifically listed. How h, beneficial uses in the downgradient basins shal			e of the major	basins are, in	manyca
						2003 (DWR, 2003).	,					
E Existing beneficial use.		waters in the F					re not considered to comprise a major basin and, a	accordingly, h	iave not been	designated a	basin number	by the D
Potential beneficial use.	af: Santa C	ara River Valle	y Basin was fo	rmerly Ventur	a Central Basi	and Acton Valley Basin wa	s formerly Upper Santa Clara Basin (DWR, 1980).					
	ag: Pleasa	nt Valley, Arroy	o Santa Rosa	Valley, and La	s Posas Valley	Basins were formerly subba	sins of Ventura Central (DWR, 1980).					
	ah: Nitrite	pollution in the	groundwater	of the Sunland	d-Tujunga area	currently precludes direct I	MUN uses. Since the ground water in this area can	n be treated o	r blended (or l	both), it retair	is the MUN de	ignatio
	Westernar		e areas had th	ne same bene	, ficial uses as f		part of San Fernando Valley Basin (DWR, 2003). Th have been combined into San Gabriel Valley. Any j					
	a): These areas were formerly part of the Russell Valley Basin (DWR, 1980).											
	ak: Ground on Fig. 1-9.	water in the Co	onejo-Tierra Re	ejada Volcanio	Area occurs p	rimarily in fractured volcani	ic rocks in the western Santa Monica Mountains a	nd Conejo Ma	untain areas.	These areas h	nave not been	delineat
		e exception ofg een designated			y (DWR Basin	No. 4-22) ground waters alor	ng the southern slopes of the Santa Monica Mount	ains are not o	considered to	comprise a m	ajor basin and	accordi
	am: DWR h	as not designat	ed basins for	ground waters	on the San Pe	dro Channel Islands.						

Los Angeles Regional Quality Control Board Table of Beneficial Uses of Ground Water by Basin for Ventura County

State MCLs for inorganic chemicals (Title 22 Metals) and their potential health effects are listed in **Table 4-1**. The EPA MCLs are listed for informational purposes but are not used to describe groundwater quality in this report. State and EPA Primary MCLs for radionuclides are listed in **Table 4-2**.

The Basin Plan also states that groundwater shall not contain "taste or odor-producing substances" that "cause nuisance or adversely affect beneficial uses." These are known as secondary MCLs (**Table 4-3**). Secondary MCLs do not pose a threat to human health and are set to a level at which most people will physically notice their presence in drinking water. Secondary MCLs assist in managing drinking water for aesthetic considerations (taste, odor and color) and are enforceable standards in California.

Table 4-1. Primary	Maximum Contaminant Levels for Title 22	Metals
		metais.

Primary Contaminants	Chemical Formula	EPA MCL ¹ (mg/L) ²	CCR, Title 22 MCL (mg/L)	Potential Health Effects
Aluminum	AI	not established	1.0	Unknown. Some studies show exposure to high levels may cause Alzheimer's, but other studies show this not to be true.
Antimony	Sb	0.006	0.006	Increase in blood cholesterol; decrease in blood sugar
Arsenic	As	0.01	0.01	Skin damage or problems with circulatory systems and potential increased risk of developing cancer.
Asbestos	various	7 MFL ³	7 MFL	Increased risk of developing benign intestinal polyps.
Barium	Ва	2	1	Increase in blood pressure.
Beryllium	Be	0.004	0.004	Intestinal lesions.
Cadmium	Cd	0.005	0.005	Kidney damage.
Chromium	Cr	0.1	0.05	Allergic dermatitis.
Copper	Cu	1.3	1.3	<u>Short term exposure</u> : Gastrointestinal distress. <u>Long term exposure</u> : Liver or kidney damage
Cyanide (as free cyanide)	CN ⁻	0.2	0.15	Nerve damage or thyroid problems.
Fluoride	F-	4	2	Bone disease (pain and tenderness of the bones); Children may get mottled teeth.
Lead⁴	Pb	0.015	0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities. <u>Adults</u> : Kidney problems; high blood pressure.
Mercury	Hg	0.002	0.002	Kidney damage.
Nickel	Ni	not established	0.1	Allergic contact dermatitis most common.
Nitrate (as Nitrogen) NO ₃ -	N	10	10	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.
Nitrate ⁵	NO ₃ -	Listed as Nitrate-N	45	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.

Primary Contaminants	Chemical Formula	EPA MCL ¹ (mg/L) ²	CCR, Title 22 MCL (mg/L)	Potential Health Effects			
Nitrite (as Nitrogen) NO ₂ -	Ν	1	1	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.			
Selenium	Se	0.05	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems.			
Thallium	TI	0.002	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems.			
¹ MCL = Maximum Contaminant Level.							

 2 mg/L = milligrams per liter.

 ${}^{3}MFL = Million$ fibers per liter, with fiber length >10

microns.

⁴Regulatory action level.

 $^5\text{CCR},$ Title 22 standard for Nitrate reported as NO_3

Table 1 2. Drimer	/ Maximum Contaminant Levels for Radionuclides	
Table 4-2. Fillinal	/ Maximum Contaminant Levels for Radionuclides	

Radionuclide	Chemical Formula	CCR, Title 22 MCL ¹	EPA MCL	Potential Health Effects
Gross Alpha particle activity (excluding radon and uranium)	none	15 pCi/L	15 pCi/L ²	
Gross Beta particle activity	none	50 pCi/L 4 millirem/yr	4 millirem/yr ³	
Radium-226	Ra-226	5 pCi/L	5 pCi/L ⁴	
Radium-228	Ra-228	5 pCi/L	combined with Radium-226	Toxic kidney effects, risk of cancer.
Strontium-90	Sr	8 pCi/L	covered under gross beta	
Tritium	3H	20,000 pCi/L	covered under gross beta	
Uranium	U	20 pCi/L	30 µg/L⁵ (~20 pCi/L)	

¹ MCL = Maximum Contaminant Level.

 2 pCi/L = picocurie per liter. One pCi is one trillionth of a Curie, 0.037 disintegrations per second, or 2.22 disintegrations per minute.

³ Gross beta MCL is 4 millirems/year annual dose equivalent to the total body or any internal organ; Sr-90 MCL = 4 millirem/year to bone marrow; tritium MCL = 4 millirem/year to total body.

⁴ EPA MCLs combine radium-226 and radium-228.

 5 µg/L = micrograms per liter, can be converted to pCi/L by multiplying by 0.67

Secondary Contaminants	Chemical Formula	EPA MCL ¹ (mg/L) ²	CCR, Title 22 MCL (mg/L)	Noticeable Effects
Aluminum	AI	0.5 to 0.2	0.2	Colored water.
Chloride	Cl-	250	250	Salty taste.
Color ³		15 ³	15	Visible tint.
Copper	Cu	1.0	15	Metallic taste; blue-green staining.
Corrosivity			not established	Metallic taste; corroded pipes/ fixtures staining.
Fluoride	F	2.0	not established	Tooth discoloration
Foaming Agents		0.5	0.5	Frothy, cloudy; bitter taste; odor.
Iron	Fe	0.3	0.3	Rusty color; sediment; metallic taste; reddish or orange staining.
Manganese	Mn	0.05	0.05	Black to brown color; black staining; bitter metallic taste.
Odor ⁴		3 TON⁴	3 TON	"Rotten-egg" smell, musty or chemical smell.
рН		6.5-8.5	not established	Low pH: bitter metallic taste; corrosion. <u>High pH</u> : slippery feel; soda taste; salt deposits.
Silver	Ag	0.1	0.1	Skin discoloration; graying of the white part of the eye.
Specific Conductance ⁵		not established	900 ⁵	Unpleasant taste or odor; gastrointestinal distress.
Sulfate	SO4 ²⁻	250	250	"Rotten-egg" smell, iron and steel corrosion or "black water"; can discolor silver, copper and brass utensils.
Total Dissolved Solids (TDS)		500	200	Hardness; deposits; colored water; staining; salty taste.
Zinc	Zn	5.0	5.0	Metallic taste.

Table 4-3: Secondary Maximum Contaminant Levels

 2 mg/L = milligrams per liter. 3 Units are in color numbers. 4 Units are in TON = Threshold Odor Number

⁵ Units are in Siemens per centimeter = S/cm.

5.0 **Current Sampling Results by Basin**

This section presents general interpretations of the groundwater quality data for each basin sampled this year. Data interpretation is limited to the samples collected by County staff, unless otherwise noted. This annual report includes a summary table of water quality analyses for nitrate, TDS, sulfate, chloride, and boron for each basin. These mineral constituents have specific numerical objectives that vary between each basin and in some cases for localized areas within a basin. Presentation of the data in this format allows for comparison with the numerical mineral quality objectives outlined in **Table 5-1** in the Basin Plan.

Table 5-1: Example of summary table.						
Criteria	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)	
Primary MCL	45	none	none	none	none	
Secondary MCL	none	500	250	250	none	
Notes: 1. mg/L = milligram 2. ND = not detected 3. Bold numbers in	ed		r accordon / MCL			

In general, Ventura County groundwater has high TDS and sulfate. The Piper Diagram (**Figure E-1**) shows water quality for all wells sampled in the County this year. County-wide there is moderate variation in water quality; calcium is the dominant cation and sulfate is the dominant anion. The most common water type is calcium sulfate.

Arroyo Santa Rosa Valley Basin (DWR Basin No. 4-007)

The water-bearing units of the Arroyo Santa Rosa Basin occupy almost the entire area beneath the Santa Rosa Valley. The area west of the Bailey Fault is generally considered hydrogeologically separate from the area east of the fault, although some leakage across the fault does occur (Camrosa, 2013). The location of the fault is inferred primarily from water well data (Camrosa, 2013). Depth to water-bearing material is approximately 50 feet below ground surface (bgs). The water-bearing units west of the fault are confined and those located east of the fault are unconfined. The degree of groundwater movement across the fault is not clearly understood. The main water-bearing units in the basin consist of alluvium and parts of the San Pedro Formation, which can reach a thickness of up to 700 feet in the eastern portion of the basin. The major hydrologic features are the Conejo Creek and its tributary, Arroyo Santa Rosa, which drain surface waters westward toward the Pacific Ocean.

The basin is dominated by an east-trending syncline that folds the San Pedro and Santa Barbara Formations, directing water into the more permeable San Pedro Formation. The Santa Rosa fault zone places the less permeable Sespe and Topanga Formations against the San Pedro Formation, creating a barrier to groundwater flow into the basin from the north and is likely responsible for the difference in water levels in the western part of the basin (CSWRB, 1956).

Land use in the area overlying the basin consists principally of agriculture and rural residential development on large lots. Much, if not all, of the area overlying this basin is unsewered with a high number of individual septic systems. Sources of nitrate to groundwater include septic systems, agricultural fertilization, and animal keeping. A large portion of recharge to the basin is discharge from the City of Thousand Oaks' Hill Canyon Wastewater Treatment Plant.

There are 85 water supply wells in the Arroyo Santa Rosa Valley Basin of which 37 are active. The Piper diagram (**Figure E-2**) shows low variation in water quality of wells sampled in 2021. There is no dominant cation, but the samples plot close to the magnesium cation type. The dominant anion for four samples is bicarbonate anion type; the remainder have no dominant anion. Six water samples are magnesium bicarbonate type, and one is sodium chloride type.

Selected water quality results are presented in **Table 5-2**. Water from four of the seven wells sampled had nitrate concentrations higher than the primary MCL. All seven wells had TDS concentrations above the secondary MCL ranging from 760 to 1,060 mg/l. Chloride concentrations in eight wells were above the level that can impair agricultural beneficial uses for sensitive plants. However, they were not above the MCL. Two samples were analyzed for Title 22 metals. None were above the primary MCL.

The Piper diagram in **Figure E-3** shows a comparison of groundwater chemistry between Tierra Rejada Basin and the Arroyo Santa Rosa Valley Basin. The water chemistry is similar but with more variation in the Tierra Rejada samples. **Figure 5-1** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

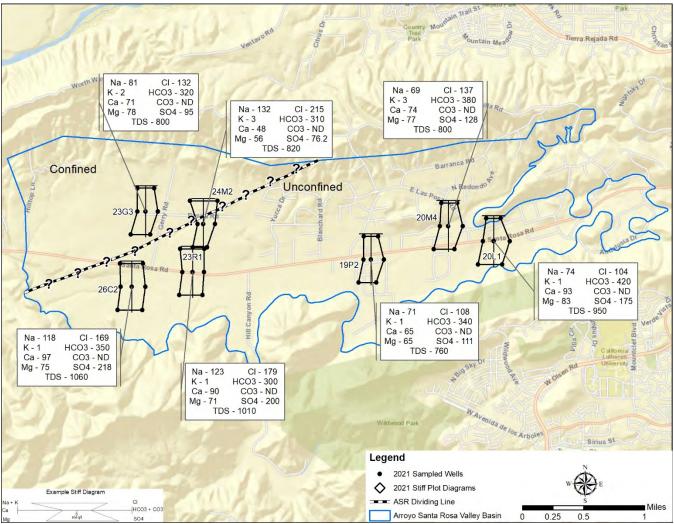
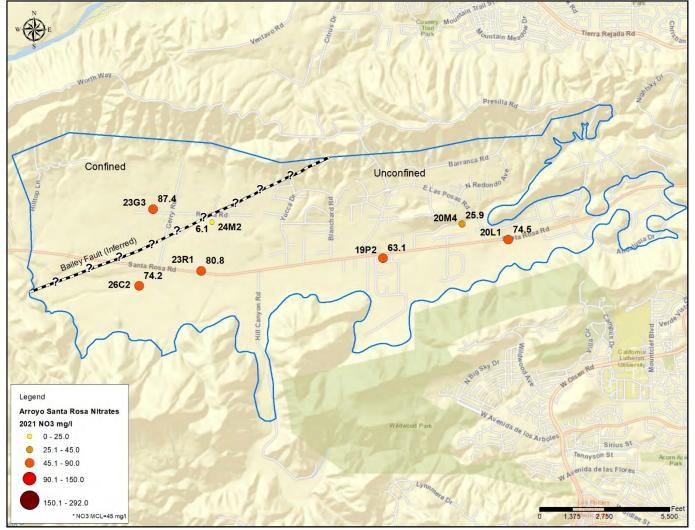

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
19P2	10/4/2021	63.1	760	111	108	0.2
20L1	12/1/2021	74.5	950	175	104	0.2
20M4	10/4/2021	25.9	800	128	137	0.1
23G3	11/18/2021	87.4	800	95	132	0.1
23R1	10/4/2021	80.8	1010	200	179	0.3
24M2	10/4/2021	6.1	820	76.2	215	0.2
26C2	10/4/2021	74.2	1060	218	169	0.3

 Table 5-2: Selected water quality results for the Arroyo Santa Rosa Valley Basin.

1. mg/L = milligrams per liter


2. ND = not detected

3. Bold numbers indicate concentration above primary or secondary MCL

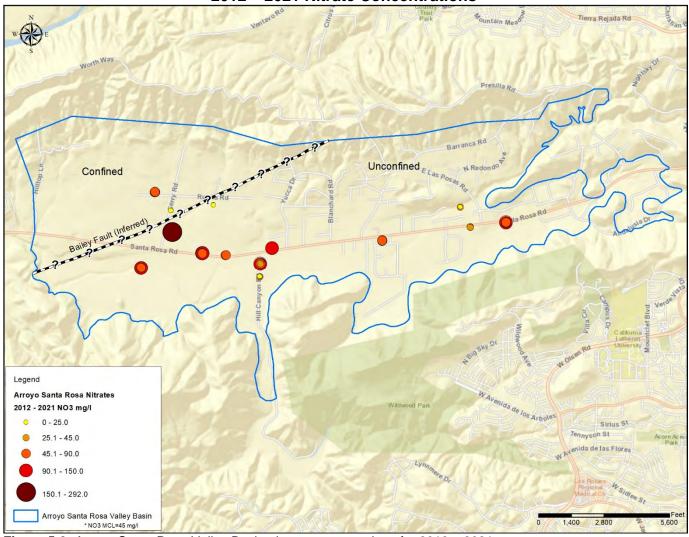

Figure 5-1: Arroyo Santa Rosa Valley Basin wells sampled with Stiff diagrams and selected inorganic constituents.

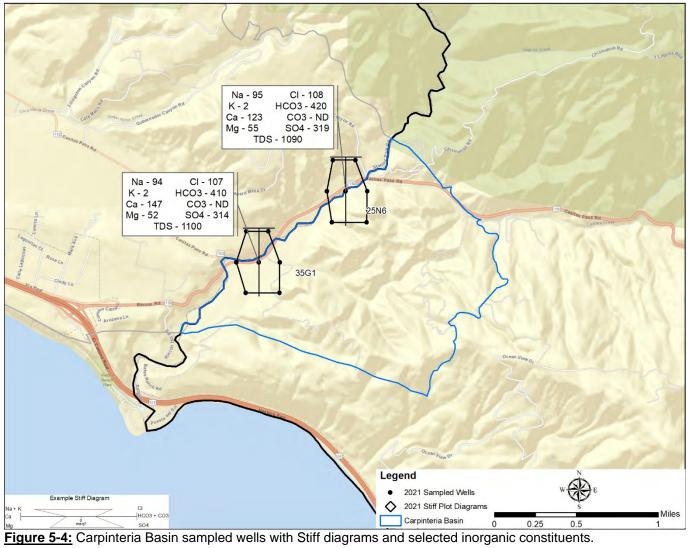
Figure 5-2 shows the geographic distribution of wells sampled in 2021, with graduated symbols representing nitrate concentrations. **Figure 5-3** shows nitrate results for 2012 through 2021 in the same manner. The Arroyo Santa Rosa Basin has been nitrate-impacted for many years. Current sampling results exceed the state MCL of 45 mg/L in four of five wells. Management practices in the Ventura County Non-Coastal Zoning Ordinance (NCZO) were established to mitigate nitrate impacts. These include limiting the number of large animals kept and restricting on-site septic systems. Camrosa blends well water pumped from the basin with imported water to reduce nitrate concentrations below the MCL. None of the groundwater samples collected this year had a nitrate (NO₃) concentration above 100 mg/L. In previous years nitrate concentrations have been as high as 292 mg/L.

ARROYO SANTA ROSA VALLEY BASIN 2021 Nitrate Concentrations

Figure 5-2: Arroyo Santa Rosa Valley Basin nitrate concentrations for 2021.

ARROYO SANTA ROSA VALLEY BASIN 2012 – 2021 Nitrate Concentrations

Figure 5-3: Arroyo Santa Rosa Valley Basin nitrate concentrations for 2012 – 2021.


Carpinteria Basin (DWR Basin No. 3-018)

Previous annual reports used the North Coast Basin boundary (a County of Ventura-defined area) for wells in the very western extent of the County. DWR Bulletin 118 designates this part of the County as the Carpinteria Basin and the DWR designation is used in this annual report. The Ventura County portion of the basin consists of narrow, thin strips of permeable sediments and marine terrace deposits along the coastline from Rincon Creek to just northwest of the Ventura River. There are 17 water supply wells in the Ventura County portion of the basin, of which only 4 are active and primarily located in the northwestern area along Rincon Creek. Water samples were collected from two wells at the northwestern end of the Ventura County portion of the basin. The Piper diagram in **Figure E-4** shows little variation in the water quality of wells sampled in 2021. There is no dominant cation, though both samples plot close to the calcium type. There is no dominant anion. One sample plots close to the sulfate type, and one plots close to the bicarbonate type. The water in both samples is calcium bicarbonate type.

Both samples had TDS and sulfate concentrations above the secondary MCL (**Table 5-3**). **Figure 5-4** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. One sample was analyzed for Title 22 metals. None of the constituents was above the MCL.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
25N6	10/21/2021	27.5	1090	319	108	0.3
35G1	10/21/2021	27.7	1100	314	107	0.3
Notes: 1. mg/L = millig 2. ND = not de						

Table 5-3: Selected water quality results for the Carpinteria Basin.

Conejo Basin (DWR Basin No. 4-010)

The Conejo Basin has few active water wells available for sampling. The depth to groundwater averages about 50 feet bgs. The water-bearing units in the basin are Quaternary alluvium and the Modelo, Topanga and Conejo Formations. The quaternary alluvium is generally only a few feet thick except near Newbury Park and Thousand Oaks where it can reach up to 60 feet in thickness; however, the alluvium is not the main water-bearing unit in the basin. The Miocene age Topanga and Conejo Formations are coeval and intercalated, or the same age and interbedded. Within the Conejo Basin area, the Topanga formation contains sandstone, conglomerate and shale. The Conejo Formation consists of volcanic tuff, debris flow, and basaltic flow and breccia deposits that reach 13,000 feet thick. The high porosity of the fractured basaltic flows allows production from these units. There are approximately 432 wells in the Conejo Basin of which 61 are active water supply wells. One well from within the basin was sampled in 2021. The Piper diagram in Figure E-22 shows little change in the water quality of the well sampled from 2020. The water in the sample is magnesium sulfate type.

The sample had TDS and sulfate concentrations above the secondary MCL (Table 5-4). Figure 5-5 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. The sample was analyzed for Title 22 metals. None of the constituents were above the primary MCL.

Table 5-4: Selected water quality results for the Conejo Basin.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
8G2	09/23/2021	ND	1350	478	133	0.1
Notes:				•		•

1. mg/L = milligrams per liter

2. ND = not detected

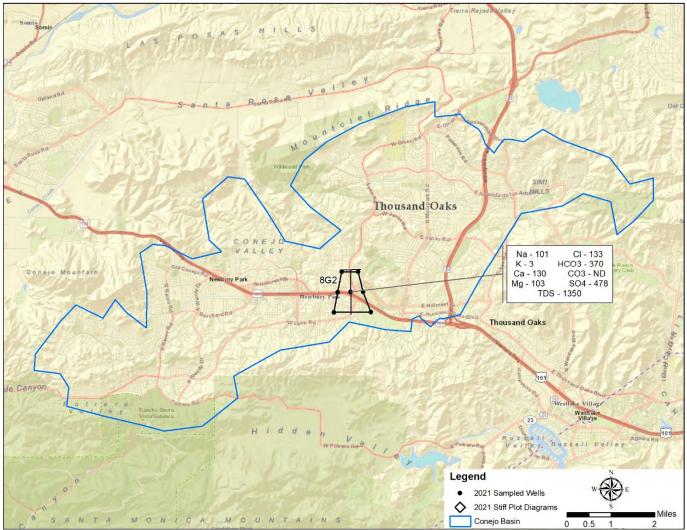


Figure 5-5: Conejo Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Cuddy Ranch Area Basin (DWR Basin No. 5-083)

The Cuddy Ranch Area Basin is in the northeastern part of Ventura County near the boundary of Kern County. Two faults contribute to the formation of the basin. The east-west trending San Andreas fault zone and Tecuva Mountain bound the north portion. The southwest trending Big Pine Fault and associated splays bound and underlie the southern portion of the basin. The portion of the basin adjacent to the Big Pine Fault zone is locally known as Little Cuddy Valley. Groundwater sampling has been limited to the Little Cuddy Valley portion of the basin. Water-bearing units consist of recent alluvial sand and gravel overlying shallow bedrock, permeable sands and gravels in the Quaternary and Tertiary sandstones, and highly fractured igneous or metamorphic rocks. Depth to water-bearing material is approximately 20 to 30 feet. Historically, groundwater quality has been considered very good. There are approximately 25 water supply wells in the Little Cuddy Valley Basin of which 18 are active. One well was sampled in the basin in 2021. The Piper diagram in Figure E-23 shows little change in the water quality of the well sampled from previous years. The water in the sample is calcium bicarbonate type.

The sample had TDS and sulfate concentrations above the secondary MCL (Table 5-5). Figure 5-6 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. The sample was analyzed for Title 22 metals. None of the constituents were above the primary MCL.

Well No.	Well No. Date Sampled		TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
4N2	11/12/2021	1.7	350	18	15	ND
Notes: 1. mg/L = milli 2. ND = not de	grams per liter etected	1	1	1	1	1

 Table 5-5: Selected water quality results for the Coneio Basin.

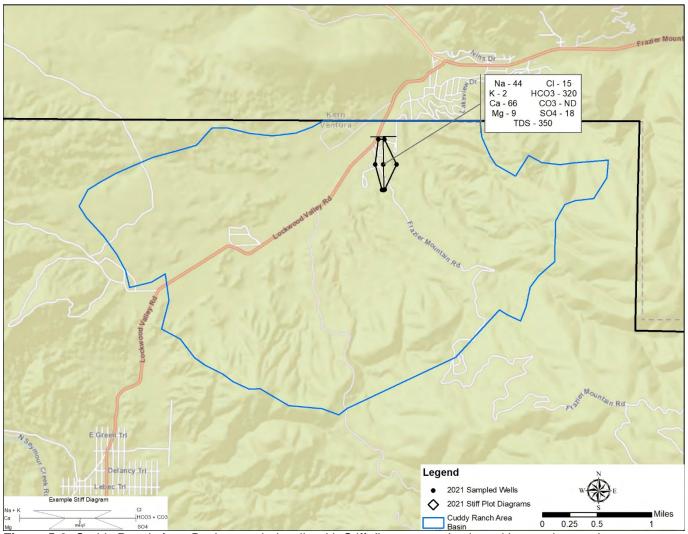


Figure 5-6: Cuddy Ranch Area Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Cuyama Valley Basin (DWR Basin No. 3-013)

The Cuyama Valley Basin is in a remote area in northwestern Ventura County. The map in Figure 5-7 shows only the portion of the basin that is in Ventura County. There are approximately 140 water supply wells in the Basin, of which 102 are active. Depth to the main water-bearing unit varies between 40 to 170 feet bqs. Four wells were sampled in the basin in 2021. The Piper diagram in Figure E-24 shows moderate variability in water quality of the wells sampled in 2021. Calcium is the dominant cation in the sample. Sulfate is the dominant anion in the sample. The water in one sample is calcium sulfate type, one sample is sodium chloride type, and the remaining samples are sodium bicarbonate type. One water sample was analyzed for Title 22 metals. No constituents were above the MCL (Table 5-5)

The samples all had TDS concentrations above the MCL. One sample had sulfate and one had chloride concertation above the secondary MCL (Table 5-6). Figure 4-7 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. The sample was analyzed for Title 22 metals. None of the constituents were above the primary MCL.

Table 5-6: Selected water quality results for the Cuyama Valley Basin.									
Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)			
15P1	10/27/2021	3.4	2090	1020	8	0.2			
30E05	10/27/2021	5.9	1100	215	251	0.7			
33J03	10/27/2021	10.3	860	197	110	0.4			
17G02	11/12/2021	ND	740	206	106	0.4			
Notes: 1. mg/L = millio	grams per liter	1		1	1	1			

2. ND = not detected

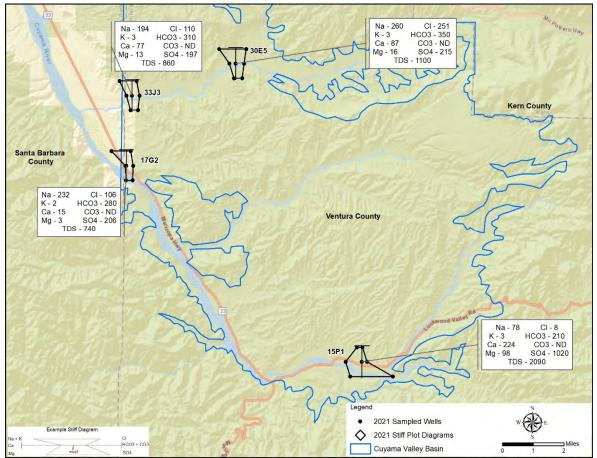


Figure 5-7: Cuyama Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Santa Clara River Valley Basin – Fillmore Subbasin (DWR Basin No. 4-004.05)

The Fillmore Subbasin, though small in geographic area, has a total aquifer thickness of almost 8,000 feet in some locations. Despite the depth of the subbasin, County records indicate that water wells are generally no deeper than 950 feet. Water quality can vary greatly depending on the depth of a well. Shallow groundwater is generally younger and recharged by river flows. Deeper groundwater is older and has acquired its aqueous chemistry through dissolution of constituents from the surrounding lithology. There are approximately 611 water supply wells in the Fillmore Subbasin, of which 447 are active. Historically, nitrate concentrations have been elevated, but only three of the nine wells sampled this year showed elevated nitrate concentration relative to the primary MCL (**Table 5-7**). The Piper diagram in **Figure E-5** shows moderate variability in water quality of wells sampled in 2021. The dominant cation in all samples is calcium. Bicarbonate is the dominant anion in one sample. Sulfate is the dominant anion for seven samples. One sample has no dominant anion but plots close to sulfate. One water sample is calcium bicarbonate type, and the remaining eight samples are calcium sulfate type.

TDS concentrations in water from all nine wells sampled this season ranged from 660 to 1,430 mg/L and all nine exceeded the secondary MCL. All nine water samples exceeded the sulfate secondary MCL. The water in three wells had nitrate concentrations greater than the MCL for drinking water. Samples from four wells were analyzed for Title 22 metals. All Title 22 metals concentrations were below the MCL for drinking water. Water quality tends to degrade in the southeastern portion of the subbasin in the vicinity of the Oak Ridge fault. **Figure 5-8** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. Water samples from all wells sampled in the Fillmore, Santa Paula and Piru subbasins were compared in a Piper diagram in **Figure E-14**. The Piper diagram shows moderate variability and the data from the three subbasins show little variation.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
31H04	9/9/2021	16.9	660	220	19	-0.1
31P01	9/9/2021	76.2	1100	332	50	0.2
09D01	9/9/2021	45.9	1430	575	85	0.8
01P08	9/8/2021	52.6	1080	369	58	0.3
31F01	9/8/2021	12.7	970	367	75	0.6
19N01	9/8/2021	2.6	1220	509	42	0.5
36P04	9/9/2021	15.8	980	378	63	0.6
01F05	9/9/2021	30.8	1130	455	69	0.5
26D03	9/9/2021	44.7	820	285	51	0.3

Table 5-7: Selected water quality results for the Fillmore Subbasin.

Notes:

1. mg/L = milligrams per liter

2. ND = not detected

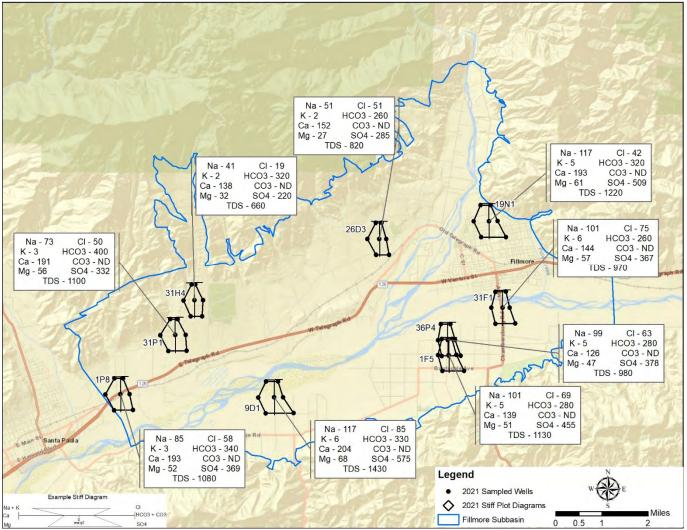


Figure 5-8: Fillmore Subbasin wells sampled with Stiff diagrams and selected inorganic constituents.

Las Posas Valley Basin (DWR Basin No. 4-008)

In previous annual reports the Las Posas Valley area was divided into three basins (east, west and south) using boundaries delineated by the County of Ventura. The California DWR Bulletin 118 basin boundaries designate one basin boundary for the whole valley. The geology of the basin causes differences in water levels and water quality between the east and the west areas of the basin. Because of this and other sustainable management factors, two management areas have been defined in the GSP for the Fox Canyon Groundwater Management Agency (FCGMA). The West Las Posas Management Area (WLPMA) encompasses what was formerly the West Las Posas Basin area and the East Las Posas Management Area (ELPMA) encompasses the area that was formerly the East Las Posas Basin and the South Las Posas Basin. The management area boundaries are defined in the GSP for the FCGMA.

Las Posas Valley Basin – East Las Posas Management Area

Water-bearing units of the ELPMA consist of Quaternary and Pleistocene alluvial deposits of varying thickness. Water-bearing deposits consist primarily of sand, or a mixture of sand and gravel identified as the Fox Canyon Aquifer and is the basal member of the San Pedro Formation (Stokes, 1971). The Fox Canyon Aquifer is generally considered to be confined in the ELPMA. Data indicates the Fox Canyon Aquifer receives recharge from leakage from overlying aquifers (FCGMA 2007 Basin Management Plan) and the exact hydrogeologic continuity is not well understood. The Somis fault acts as a hydrogeologic boundary between the ELPMA and WLPMA. Depth to the upper water-bearing unit is approximately 120 to 150 feet bgs and 530 to 580 feet bgs to the lower water-bearing unit. There are approximately 402 water supply wells in the ELPMA, of which 164 are active wells.

The Piper diagram in **Figure E-6** shows moderate variability in water quality between 25 wells sampled in 2021. Calcium is the dominant cation in fourteen samples and there are no dominant cations in the other samples, but they plot closest to the sodium cation. Sulfate is the dominant anion in sixteen samples, and bicarbonate is the dominant anion in nine. The water in eight wells is calcium bicarbonate type, calcium sulfate in ten wells, sodium bicarbonate in one well, and sodium sulfate in six wells. Chloride concentrations in eleven water samples were above the level that may cause impairment of agricultural beneficial uses for sensitive plants. The two southwestern wells had the highest chloride concentrations. None of the wells had chloride concentrations that exceed the primary MCL for drinking water. The remainder had good water quality with TDS ranging between 320 and 1,550 mg/L (**Table 5-8**).

The Piper diagram in **Figure E-21** shows a comparison between the ELPMA and WLPMA water chemistry. There is moderate variability in the water quality of the combined areas. Water samples from both management areas are in two main groups: those with sulfate as the dominant anion and plot as calcium sulfate type, and those with no dominant anion but plot near the bicarbonate type and calcium bicarbonate type. The water chemistry of both management areas is similar, although based on the sharp change in water level between the ELPMA and WLPMA, the degree of hydrogeologic connection appears to be limited.

TDS was above the secondary MCL in eighteen wells, ranging from 320 to 1,550 mg/L (**Table 5-8**). Water from three wells had nitrate concentrations above the primary MCL. Thirteen samples had sulfate concentrations above the secondary MCL. Water from thirteen wells was analyzed for Title 22 metals and all constituents were below the MCLs. **Figure 5-9** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
9Q5	10/21/2021	11.6	1550	565	164	0.7
4R3	10/21/2021	ND	1360	511	139	0.4
8H2	10/21/2021	20.5	1170	403	133	0.6
28J4	10/20/2021	64	630	120	54	ND
34G1	10/20/2021	ND	440	131	11	ND
26R3	10/20/2021	0.5	540	194	12	ND
30E6	10/20/2021	5.2	330	69.2	13	ND
29K6	10/20/2021	73.5	450	37.2	42	ND
29K8	10/20/2021	17.3	510	124	28	ND
10G1	10/22/2021	56.5	1470	507	158	0.7
7D2	10/22/2021	18.2	1160	395	149	0.6
7B2	10/22/2021	6.8	1240	459	148	0.8
1Q2	10/22/2021	13.9	1400	512	154	0.8
1Q1	10/22/2021	28	1210	354	126	0.7
16B6	10/22/2021	2.6	1330	513	165	0.6
26H1	11/17/2021	34.2	530	105	61	0.1
03H1	11/17/2021	ND	860	278	78	0.2
31B1	11/17/2021	ND	430	142	26	0.1
4F1	11/18/2021	ND	1080	344	92	0.1
4B1	11/18/2021	ND	450	148	14	0.1
36P1	11/19/2021	19	320	56	20	0.1
28N3	11/22/2021	ND	1070	310	121	0.9
1B2	11/22/2021	ND	540	177	88	0.2
6F1	11/22/2021	16.3	1090	345	127	0.6
10D2	11/22/2021	35.9	470	98.1	54	ND

 Table 5-8: Selected water quality results for the Las Posas Valley Basin – East Las Posas Management Area.

Notes:

1. mg/L = milligrams per liter 2. ND = not detected

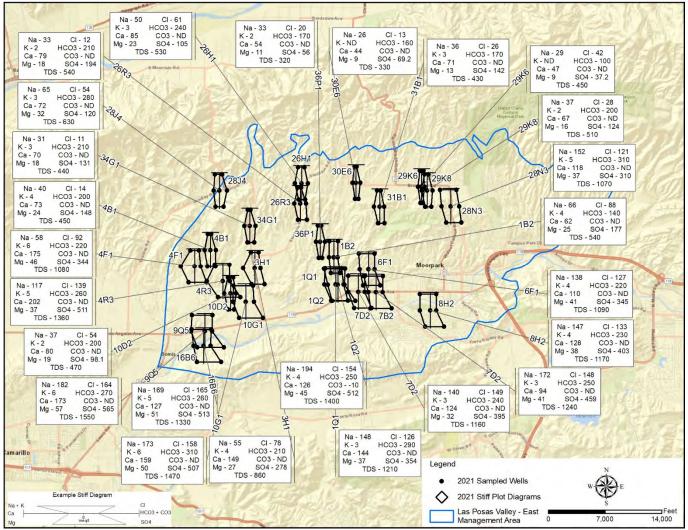


Figure 5-9: Las Posas Valley Basin EMA, sampled wells with Stiff diagrams and selected inorganic constituents.

Las Posas Valley Basin – West Las Posas Management Area

There are approximately 164 water supply wells in the WLPMA of the Las Posas Valley Basin, of which 89 are active. Twenty-two wells within the WLPMA were sampled in 2021. The Piper diagram in **Figure E-7** shows moderate variability in water quality. Calcium is the dominant cation in three samples, sodium is the dominant cation in three samples and there is no dominant cation in the remaining samples. Bicarbonate is the dominant anion in five samples, and sulfate is the dominant anion in eight samples. There is no dominant anion in the remaining samples. There is sodium bicarbonate type, five are sodium sulfate type, and nine are calcium sulfate type.

TDS was above the secondary MCL in nineteen wells, ranging from 330 to 1,730 mg/L (**Table 5-9**). Water from four wells had nitrate concentrations above the primary MCL. Thirteen samples had sulfate concentrations at or above the secondary MCL. Water from twelve wells was analyzed for Title 22 metals. Selenium concentration was above the MCL for drinking water in two samples. All other constituents were below the MCLs. **Figure 5-10** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
17L01	10/4/2021	25.8	1370	511	156	0.6
15M04	10/21/2021	8.9	1050	385	85	0.3
09N01	10/21/2021	2.4	900	298	66	0.4
18H01	10/21/2021	117	1730	605	131	0.4
18H14	10/21/2021	ND	930	348	49	0.3
08F01	10/21/2021	ND	330	95.4	13	ND
17N03	10/20/2021	14.9	820	257	70	0.4
10G03	10/20/2021	2.7	640	154	50	0.3
11A02	10/20/2021	162	1480	411	112	0.2
11A03	10/20/2021	ND	620	197	33	ND
36Q01	10/20/2021	73	770	164	88	ND
12H02	10/20/2021	8.8	550	143	51	ND
13A01	10/22/2021	ND	490	165	15	0.1
17F05	11/9/2021	ND	950	361	64	0.6
35P02	11/9/2021	67.3	780	217	85	0.2
32K01	11/9/2021	ND	1040	395	25	0.3

 Table 5-9:
 Selected water quality results for the Las Posas Basin - West Las Posas Management Area.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
07R03	11/9/2021	ND	370	115	20	ND
06R01	11/17/2021	ND	540	200	16	0.2
28A02	11/17/2021	ND	820	253	67	0.4
10Q04	11/19/2021	ND	790	250	35	0.2
16J03	12/1/2021	ND	690	251	53	0.3
20A02	12/1/2021	0.2	890	382	45	0.7
Notes:		l	1	l	l	l

Notes:

1. mg/L = milligrams per liter

2. ND = not detected

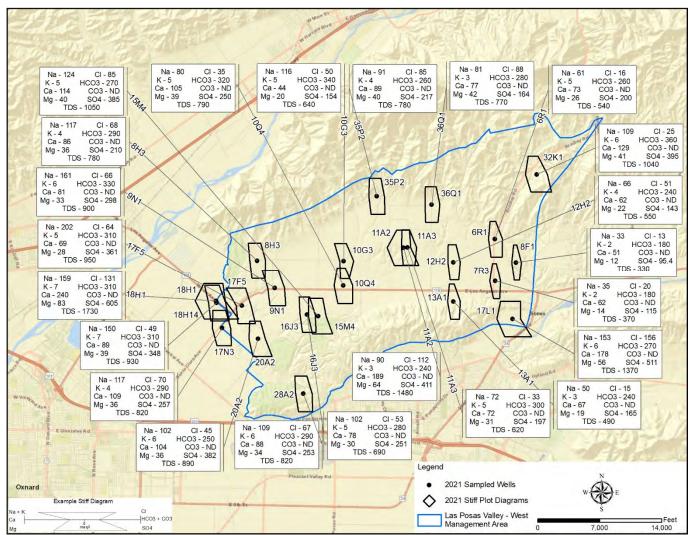


Figure 5-10: Las Posas Valley Basin WLPMA sampled wells with Stiff diagrams and selected inorganic constituents.

Lockwood Valley Basin (DWR Basin No. 4-017)

The Lockwood Valley Basin groundwater quality ranges from good to poor. The Basin covers a geographic area of 34.1-square miles. Water-bearing units consist of Quaternary alluvium, Tertiary sedimentary rocks and Quaternary stream channel alluvium. The Tertiary sedimentary rocks have high silt and clay content, resulting in low permeability. The alluvial material consists primarily of silty and clayey sands, gravels and boulders and has a much higher permeability than the underlying Tertiary sedimentary rocks. The Quaternary stream channel alluvium, prevalent near existing stream channels, contain a smaller percentage of clays and silts and wells penetrating this material tend to be higher yielding producers. Depth to water-bearing units range from 55 to 60 feet. There are approximately 291 water supply wells in the Lockwood Valley Basin, of which 248 are active. Three wells were sampled in the basin in 2021. The Piper diagram in **Figure E-25** shows sodium is the dominant cation in one sample and calcium is the dominant cation in two samples. Bicarbonate is the dominant anion in all three samples. One sample is sodium bicarbonate type.

Two samples had TDS concentrations and one sample had a sulfate concentration above the secondary MCL (**Table 5-10**). **Figure 5-11** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	NO3 IDS Sulfate Chloride			Boron (mg/L)
33R3	11/12/2021	6.9	510	187	17	0.8
29R7	11/12/2021	2	810	253	11	13.4
29N2	11/12/2021	ND	390	56	6	0.3
Notes:						

Table 5-10: Selected water quality results for the Lockwood Valley Basin.

1. mg/L = milligrams per liter

2. ND = not detected

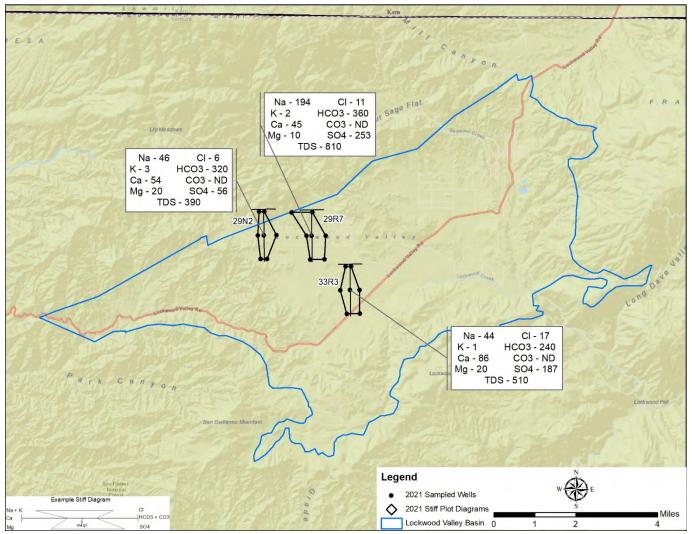


Figure 5-11: Lockwood Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Santa Clara Valley River – Mound Subbasin (DWR Basin No. 4-004.03)

The water-bearing units of the Mound Subbasin consist of Quaternary alluvium and the San Pedro Formation. These formations are divided into the Upper Aquifer System (UAS) and the Lower Aquifer System (LAS). The UAS consists of undifferentiated Holocene alluvium that make up the Oxnard Aquifer and older Pleistocene alluvium that makes up the Mugu Aguifer. The alluvium consists of silts and clays with lenses of sand and gravel, with a maximum thickness of 500 feet. The LAS predominantly consists of fine sands and gravels of the San Pedro Formation and extends as deep as 4,000 feet bgs. The upper part of the San Pedro formation consists of variable amounts of clay, silty clay and sand. A series of interbedded water-bearing sands in this unit are time equivalent to the Hueneme Aquifer of the Oxnard Subbasin. The lower part of the San Pedro Formation consists primarily of sand and gravel zones with layers of clay and silt and is equivalent to the Fox Canyon aguifer found in the Oxnard plain. Groundwater is generally unconfined in the alluvium and confined in the San Pedro Formation. Historic water quality data for the basin shows that water quality is generally better in the lower zone.

There are 86 water supply wells in the Mound Subbasin, of which 32 are active. Four wells were sampled in the basin in 2021. The Piper diagram in Figure E-26 shows low variability in water quality of all the wells sampled this year. There is no dominant cation for any of the water samples. Sulfate is the dominant anion for all samples. Three samples are calcium sulfate, and one is sodium sulfate type. Two water samples were analyzed for Title 22 metals. All Title 22 constituents were below the MCL for drinking water.

All samples had TDS and sulfate concentrations above the secondary MCL (Table 45-11). Figure 5-12 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
13K3	9/14/2021	ND	1140	410	75	0.6
9K7	9/14/2021	0.7	1230	496	77	0.5
13F2	9/14/2021	ND	1130	387	68	0.6
10N4	9/14/2021	10.3	1020	413	48	0.4
Notes: 1. mg/L = millig 2. ND = not de		1	I	1	1	L

Table 5-11: Selected water quality results for the Mound Subbasin.

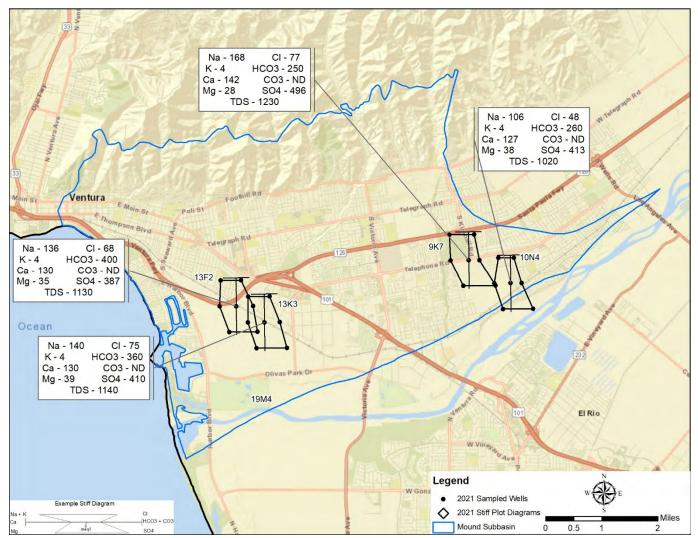


Figure 5-12: Mound Subbasin sampled wells with Stiff diagrams and selected inorganic constituents.

Ojai Valley Basin (DWR Basin No. 4-002)

The aquifer system of Ojai Valley Basin is considered unconfined except in the western end of the basin where a semi-confining to confining clay layer is present. Water quality in the basin is considered good. There are approximately 327 water supply wells in the basin, of which 191 are active. Depth to waterbearing units is generally 25 to 30 feet bgs. Piper diagram Figure E-8 shows low variation of the water quality for eleven wells sampled in 2021. Calcium is the dominant cation in six samples; sodium is the dominant cation in one sample; and the remaining samples have no dominant cation. Sulfate is the dominant anion in one sample, bicarbonate in two samples, chloride is the dominant anion in one sample and there is no dominant anion in the remaining samples. The water in one well is calcium chloride, one is sodium bicarbonate, four are calcium sulfate, and five are calcium bicarbonate type.

Water from all eleven wells had TDS concentrations above the secondary MCL (Table 5-12). TDS concentrations ranged from 560 to 1,220 mg/L. The Sulfate concentration in two wells exceeded the secondary MCL. One well had a nitrate concentration above the MCL for drinking water. Water samples from four wells were analyzed for Title 22 metals. None of the constituents were above the primary MCL. Figure 5-12 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for wells sampled in the Ojai Valley Basin.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
04P05	11/10/2021	31.7	680	226	28	ND
04Q01	11/10/2021	52.9	680	213	25	ND
05H04	11/10/2021	18.5	630	218	19	ND
05M04	11/10/2021	36.9	740	232	25	ND
06J09	11/10/2021	31.8	670	218	33	ND
06K14	11/10/2021	21.8	910	210	138	0.6
01J03	11/10/2021	ND	560	179	24	ND
01K02	11/10/2021	ND	600	194	29	ND
12B03	11/10/2021	ND	1220	152	318	ND
32K02	11/10/2021	5.1	840	299	49	ND
33J01	11/10/2021	ND	1120	436	56	ND

Table 5-12: Selected water quality results for the Ojai Valley Basin.

mg/L = milligrams per liter

2. ND = not detected

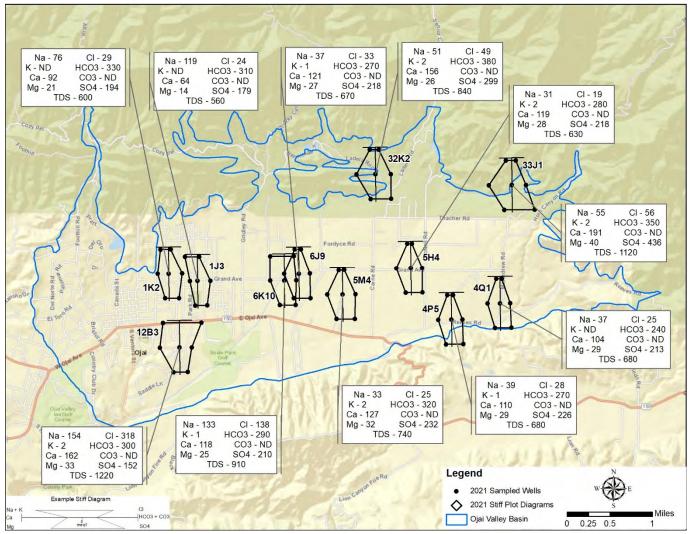


Figure 5-13: Ojai Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Santa Clara River Valley Basin – Oxnard Subbasin (DWR Basin No. 4-004.02)

Previous annual reports divided the Oxnard Subbasin into two separate basins. The Oxnard Plain Forebay and the Oxnard Plain Pressure Basin. DWR Bulletin 118 groundwater basin boundaries are used in this annual report and the Forebay is included within the boundary of the Oxnard Subbasin. Because of the difference in UAS geology between the Oxnard Plain Forebay and the Oxnard Plain Pressure Basin, the Forebay is separated as a management area within the Oxnard Subbasin. The Oxnard Subbasin is the largest and most complex of the groundwater basins in Ventura County and consists of two major aquifer systems, the UAS and the LAS. There are approximately 1,182 water supply wells in the Oxnard Subbasin, of which 464 are active.

From shallowest to deepest, the UAS consists of the Perched/Semi Perched, Oxnard and Mugu aquifers. Only the Oxnard and Mugu Aquifers are sampled in the UAS. The LAS consists, from shallowest to deepest, of the Hueneme, Fox Canyon and Grimes Canyon aquifers. There are no wells perforated solely in the Grimes Canyon aquifer, therefore it cannot be sampled exclusively.

Forebay Management Area

The Forebay Management Area is the principal recharge area for the UAS and LAS of the Oxnard Subbasin. Depth to water-bearing units is generally 25 to 50 feet. There are approximately 281 water supply wells in the Forebay Management Area, of which 102 are active wells. The Forebay Management Area generally has acceptable water quality except in the southern area where high nitrate concentrations are common. The northern area is predominantly agricultural with a few residential areas that still rely on individual septic systems. One well was sampled in 2021 from the LAS. The Piper diagram in **Figure E-28** shows the water quality of the well sampled this year. There is little difference from previous years. There is no dominant cation and sulfate is the dominate anion. The water in the sample is calcium sulfate type. The water sample was analyzed for Title 22 metals and no constituents were above the primary MCL.

The sample had TDS and sulfate concentrations above the secondary MCL (**Table 5-12**). **Figure 5-14** shows approximate well location and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Aquifer	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)		
7P4	10/21/2021	Hueneme / Fox Canyon / Grimes	ND	1240	516	68	0.5		
-									

Table 5-13: Selected water quality results for the Oxnard Subbasin Forebay Management Area.

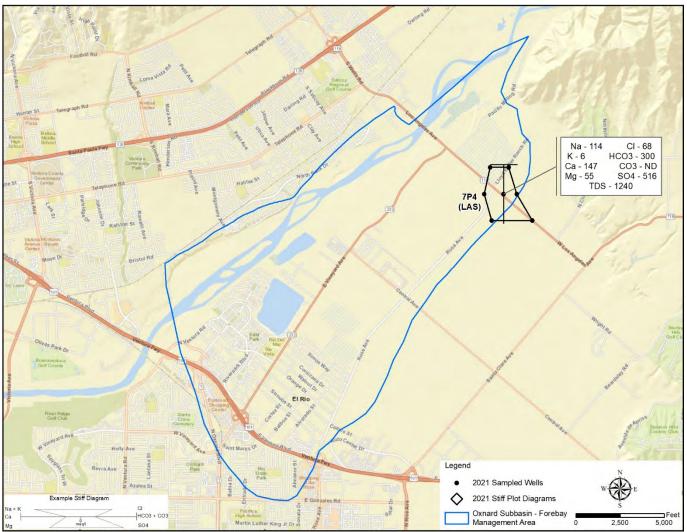


Figure 5-14: Oxnard Subbasin Forebay Management Area sampled wells with Stiff diagrams and selected inorganic constituents.

Upper Aquifer System (UAS) – Outside Forebay Management Area

Oxnard Aquifer

The Oxnard Aquifer is the shallowest of the confined aquifers and the most developed, based on the number of wells. Average depth to the main water-bearing unit is 80 feet bgs.

Four wells were sampled from the Oxnard Aquifer in 2021. Water from two wells had manganese concentrations above the secondary MCL. Water samples from all four wells had TDS and sulfate concentrations above the secondary MCL. Sulfate concentrations ranged from 393 to 654 mg/L. TDS concentrations range from 1,050 to 1,550 mg/L. None of the samples were analyzed for Title 22 metals.

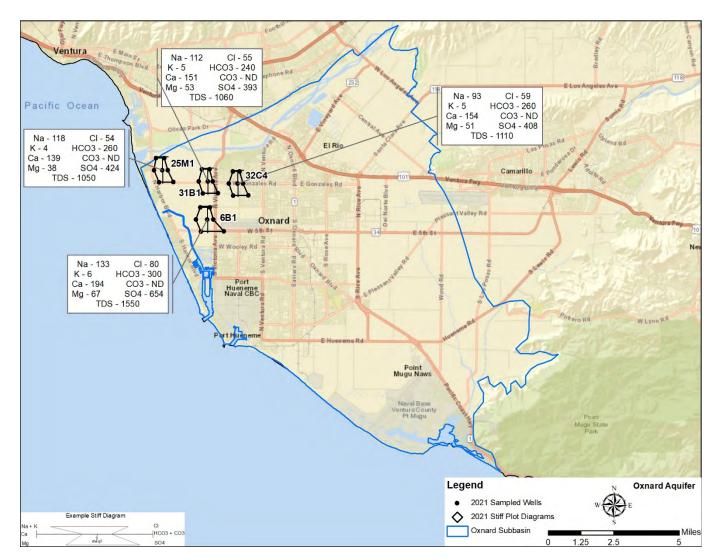

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
31B1	11/5/2021	Oxnard	Upper	23.8	1060	393	55	0.8
32C4	11/5/2021	Oxnard	Upper	36.9	1110	408	59	0.8
25M1	11/15/2021	Oxnard	Upper	1.4	1050	424	54	0.6
6B1	11/15/2021	Oxnard	Upper	5.2	1550	654	80	1
•	milligrams per	liter						

 Table 5-14: Selected water quality results for wells screened in the Oxnard Aquifer.

2. ND = not detected

3. Bold numbers indicate concentration above primary or secondary MCL

Groundwater plumes with elevated nitrate concentrations are common in the northern portion of the Basin. Sources of nitrate include nitrogen-based fertilizers in agricultural areas and septic systems in residential areas.

Figure 5-15: Oxnard Subbasin Oxnard Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.

Mugu Aquifer

The Mugu Aquifer is the lowest layer of the UAS and has similar physical and chemical characteristics to the Oxnard Aquifer, with slightly better water quality. Average depth to the main water-bearing unit is 200 feet bgs. Three wells perforated solely in the Mugu Aquifer were sampled in 2021. The water from all wells had sulfate and TDS concentrations above the primary MCL. No wells were analyzed for Title 22 metals.

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
6R2	11/5/2021	Mugu	Upper	4.1	1410	570	73	0.9
24M3	12/1/2021	Mugu	Upper	2.8	1280	381	240	0.6
24C3	12/1/2021	Mugu	Upper	ND	880	388	42	0.6

Table 5-15: Selected water quality results for wells screened in the Mugu Aquifer.

Notes:

1. mg/L = milligrams per liter

2. ND = not detected

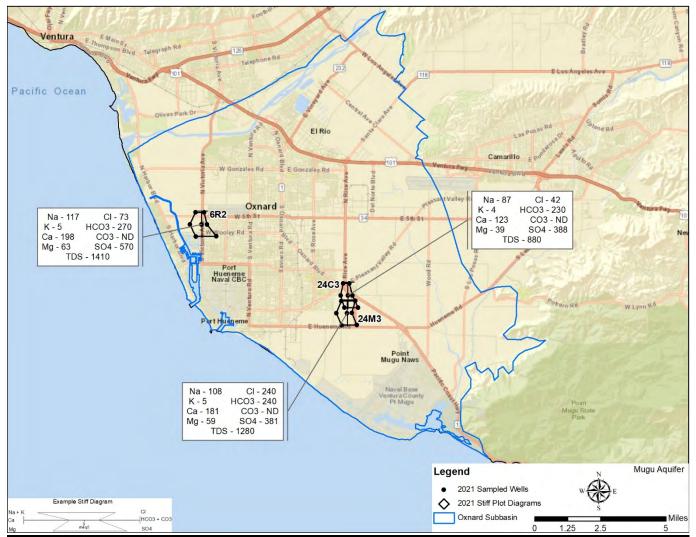


Figure 5-16: Oxnard Subbasin Mugu Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.

Oxnard & Mugu Aquifers

Six Oxnard Subbasin wells were sampled in 2021 perforated across both the Oxnard and Mugu Aquifers and will be referred to as UAS wells. Results for those wells are included in **Appendix D** and shown on the map of the UAS (**Figure 5-17**). All six samples had TDS and sulfate concentrations above the secondary MCL. TDS concentrations varied between 1,020 and 5,130 mg/L. One sample had chloride concentrations above the MCL. Water samples from one Oxnard/Mugu well was analyzed for Title 22 metals and all constituents were below the primary MCL.

Table 5-16: Selected water c	uality	results for wells screened across the Oxnard & Mugu Aquifers.
------------------------------	--------	---

,	Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)	
---	----------	-----------------	---------	-------------------	-----------------------------	---------------	-------------------	--------------------	-----------------	--

31D2	11/5/2021	Oxnard & Mugu	Upper	13.8	1040	446	51	0.8
19P1	11/15/2021	Oxnard & Mugu	Upper	23	1490	630	85	0.6
7H5	11/15/2021	Oxnard & Mugu	Upper	ND	1200	433	99	0.7
12Q3	11/16/2021	Oxnard & Mugu	Upper	ND	1020	385	52	0.7
29B3	12/1/2021	Oxnard & Mugu	Upper	0.2	1040	322	108	0.5
25K1	12/1/2021	Oxnard & Mugu	Upper	1.4	5130	466	1230	0.6

1. mg/L = milligrams p

2. ND = not detected

3. Bold numbers indicate concentration above primary or secondary MCL

The Piper diagram in Figure E-9 shows a comparison of all wells sampled in the UAS and perforated in the Oxnard, Mugu or across both aquifers. There is no dominant cation, though the data plots closest to a calcium cation type. One sample has chloride as the dominant anion, two samples have no dominant anion, and the dominant anion for the remaining samples is sulfate. One UAS sample is calcium chloride type, and the remaining samples are calcium sulfate type.



Figure 5-17: Oxnard Subbasin Oxnard & Mugu Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents.

Lower Aquifer System (LAS)

Hueneme Aquifer

The Hueneme Aquifer is the shallowest of the LAS aquifers with the depth to the main water-bearing unit at approximately 375 feet. Few wells are perforated exclusively in the Hueneme Aquifer making water quality determination for the aquifer difficult. One well screened solely in the Hueneme Aquifer was sampled in 2021 (**Figure 5-18**). The well had TDS and sulfate concentrations above the secondary MCL. The sample was analyzed for Title 22 metals and no constituents were above the MCL.

Table 5-17: Selected water quality results for wells screened in the Hueneme Aquif	er.
--	-----

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
30F3	11/5/2021	Hueneme	Lower	ND	920	408	47	0.7
Notes: 1. mg/L = millig 2. ND = not de								

Figure 5-18 Oxnard Subbasin Hueneme Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.

Fox Canyon Aquifer

The Fox Canyon Aquifer is the second most-developed production zone in the Oxnard Subbasin, based on the number of wells and depth of perforations. Eight wells perforated solely in the Fox Canyon Aquifer were sampled in 2021 (**Figure 5-19**). Depth to the main water-bearing unit is approximately 580 feet bgs. The Fox Canyon Aquifer generally has excellent water quality and high yield rates but is subject to seawater intrusion near Point Mugu and the Hueneme Submarine Canyon. Extractions are monitored and allocated by the FCGMA to help mitigate aquifer overdraft and reduce the intrusion of seawater.

All eight samples had TDS concentrations that exceeded the secondary MCL. Seven samples had sulfate concentrations that exceeded the secondary MCL. One sample was analyzed for Title 22 metals and no constituents were above the MCL.

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
20Q5	10/20/2021	Fox Canyon	Lower	ND	970	341	73	0.6

Table 5-18: Selected water quality results for wells screened in the Fox Canyon Aquifer.

36B2	11/15/2021	Fox Canyon	Lower	ND	850	222	114	0.6
20B1	11/15/2021	Fox Canyon	Lower	ND	790	257	46	0.6
25K2	12/1/2021	Fox Canyon	Lower	ND	800	265	38	0.6
26K3	12/1/2021	Fox Canyon	Lower	0.2	830	292	43	0.4
26M3	12/1/2021	Fox Canyon	Lower	0.3	870	297	43	0.4
26P2	12/1/2021	Fox Canyon	Lower	0.2	780	254	40	0.4
23R2	12/1/2021	Fox Canyon	Lower	0.2	890	310	43	0.6
Mataa								

Notes:

1. mg/L = milligrams per liter

2. ND = not detected

3. Bold numbers indicate concentration above primary or secondary MCL

Figure 5-19 Oxnard Subbasin Fox Canyon Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.

Hueneme & Fox Canyon Aquifers

Five Oxnard Subbasin wells were sampled in 2021 perforated across both the Hueneme and Fox Canyon Aquifers and will be referred to as LAS wells. Results for those wells are included in **Appendix D** and shown on the map of the LAS (**Figure 5-20**). All five samples had TDS concentrations and four had sulfate concentrations above the secondary MCL. TDS concentrations varied between 780 and 1,050 mg/L. Water samples from two Hueneme/Fox Canyon wells were analyzed for Title 22 metals and all constituents were below the primary MCL.

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
24P2	10/20/2021	Hue & Fox	Lower	9.6	980	411	50	0.6
30A2	10/20/2021	Hue & Fox	Lower	3.6	920	346	55	0.5
19J3	11/15/2021	Hue & Fox	Lower	ND	1050	421	53	0.7
17B2	11/15/2021	Hue & Fox	Lower	ND	780	265	44	0.5
21H2	11/18/2021	Hue & Fox	Lower	ND	820	217	100	0.5

Notes:

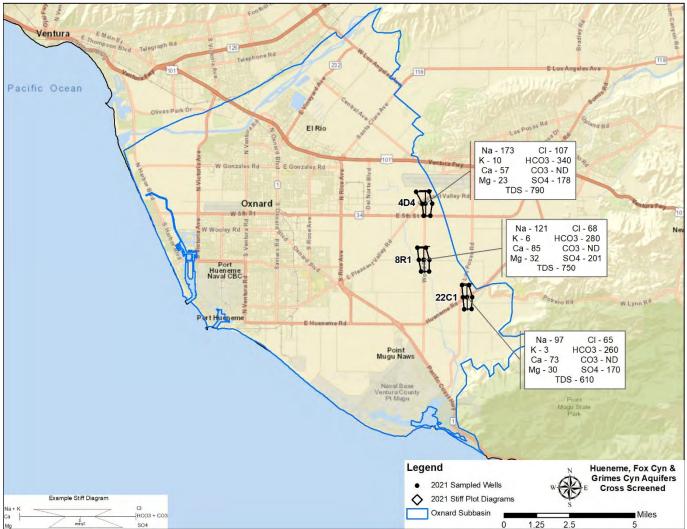
1. mg/L = milligrams per liter

2. ND = not detected

Figure 5-20 Oxnard Subbasin Hueneme and Fox Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents.

Hueneme, Fox Canyon & Grimes Canyon Aquifers

Three Oxnard Subbasin wells sampled in 2021 are perforated across the Hueneme, Fox Canyon and Grimes Canyon Aquifers. They are also referred to as LAS wells. Results for those wells are included in **Appendix D** and shown on the map of the LAS in **Figure 5-22**. All three samples had TDS concentrations above the secondary MCL. TDS concentrations from these wells varied between 610 and 790 mg/L. Water samples from one Fox/Hueneme/Grimes well was analyzed for Title 22 metals with all constituents below the primary MCL.


Table 5-20: Selected water quality results for wells screened across the Hueneme, Fox Canyon & Grimes Aquifers.

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
22C1	11/18/2021	Hue, Fox & Grimes	Lower	ND	610	170	65	0.3
8R1	11/18/2021	Hue, Fox & Grimes	Lower	ND	750	201	68	0.4
4D4	11/18/2021	Hue, Fox & Grimes	Lower	ND	790	178	107	0.5

Notes:

1. mg/L = milligrams per liter

2. ND = not detected

Figure 5-21 Oxnard Subbasin Hueneme, Fox Canyon and Grimes Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents.

The Piper diagram **Figure E-10** shows moderate variability in water quality of all wells sampled in the LAS. Sodium is the dominant cation in three samples, and the remainder have no dominant cation but about half plot closely to the sodium type and half plot closely to the calcium type. Five samples have no dominant anion but plot close to the bicarbonate ion and sulfate is the dominant anion for the remainder. Three water samples are sodium sulfate type, five samples are sodium bicarbonate, and the remainder are calcium sulfate type.

The Piper diagram **Figure E-11** shows moderate variation between all wells sampled in the Oxnard Subbasin.

Santa Clara River Valley Basin – Piru Subbasin (DWR Basin No. 4-004.06)

The Piru Subbasin groundwater recharge is principally from precipitation, water releases from Lake Piru by UWCD, and the Santa Clara River. Flow from the Santa Clara River enters the basin from the east and carries discharges from wastewater treatment plants and urban and stormwater runoff from Los Angeles County. There are approximately 191 water supply wells in the Piru Subbasin, of which 150 are active. Depth to the main water-bearing unit is approximately 30 to 90 feet. On April 6, 2010, the LARWQCB adopted a Basin Plan Amendment that includes a Total Maximum Daily Load (TMDL) of 117 mg/L for chloride in surface water and 150 mg/L in groundwater for the stretch of the Santa Clara River in Ventura County east of Piru Creek.

Six wells were sampled in the Piru Subbasin in 2021. None of the groundwater sampled had a chloride concentration above the TMDL. The Piper diagram, **Figure E-12** shows low variability in water quality. There is no dominant cation for any samples. Sulfate is the dominant anion for four samples with no dominant anion for the remaining samples. Five samples are calcium sulfate type, and one sample is sodium sulfate type. The TDS concentrations exceeded the secondary MCL in all samples and varied from 770 to 2,370 mg/L (**Table 5-22**). Sulfate concentrations exceeded the secondary MCL in five samples. One sample had nitrate concentration greater than the primary MCL. **Figure 5-23** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Water samples from two wells were analyzed for Title 22 metals. No constituents were above the Title 22 MCL's.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
30J4	9/08/2021	10.5	860	338	57	0.6
25H1	9/08/2021	81.2	1540	509	142	0.7
25M3	9/08/2021	39.7	2370	1080	73	0.9
30J4	9/14/2021	16.6	770	233	66	0.5
26J3	9/14/2021	13.1	960	327	106	0.5
26H1	9/14/2021	24.2	1230	419	103	0.6
Notes:	5/14/2021	27.2	1250	413	100	0.0

Table 5-21: Selected water quality results for the Piru Subbasin.

Notes:

1. mg/L = milligrams per liter

2. ND = not detected

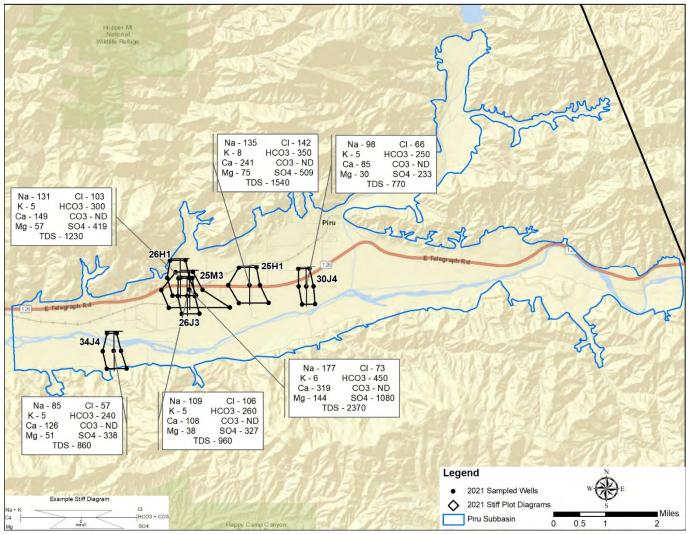


Figure 5-22: Piru Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Pleasant Valley Basin (DWR Basin No. 4-006)

Pleasant Valley Basin groundwater quality varies greatly throughout the basin. The upper-most waterbearing unit at 35 to 60 feet is not used due to very poor water quality. Permeable lenses of alluvial sands, gravels, silts and clays of recent to Upper Pleistocene age that vary in thickness from a few feet to several hundred feet are equivalent to but not connected with the Oxnard Aquifer and are referred to as the upper zone in this report. Depth to the main water-bearing unit is approximately 400 to 500 feet bgs. Underlying the upper zone are the aquifers of the Lower Aquifer System (LAS). First are the marine sands and gravels of the lower-most member of the early Pleistocene San Pedro Formation and is known as the Fox Canyon Aquifer. The Grimes Canyon Aquifer underlies the Fox Canyon Aquifer at depths below 1,000 feet and is perforated by only the deepest wells. There are approximately 347 water supply wells in the Pleasant Valley Basin, of which 85 are active. Eighteen wells were sampled in 2021, with four perforated in the upper zone, one perforated in both zones, and thirteen perforated in the LAS.

The Piper diagram, **Figure E-13** shows a comparison of wells perforated in the upper zone with those perforated in the LAS. Wells perforated in the upper zone tend to have higher concentrations of sulfate than those in the LAS but in general the upper and LAS show similar water quality. The Piper diagram shows more variability in the water samples from the LAS. For wells in the upper zone, calcium is the dominant cation in one sample and the remaining three samples have no dominant cation but plot closely to the calcium type. Three samples are calcium sulfate type, and one sample is sodium sulfate. For wells in the LAS, sodium is the dominant cation in one samples with no dominant anion for the remainder. The water in three samples is sodium sulfate type, five samples are sodium bicarbonate type, and five samples are calcium sulfate type. The water in the well perforated in both zones is calcium sulfate type.

TDS concentrations in all water samples varied from 670 to 4,620 mg/L. All sixteen wells sampled had TDS concentrations above the secondary MCL, with the four highest concentrations in the upper zone. Nine wells had sulfate concentrations above the secondary MCL; the three highest were in the upper zone. Three wells had nitrate concentrations above the drinking water MCL; the highest in an upper zone well. Chloride concentrations were above the secondary MCL in three wells and twelve were above a concentration that can impair agricultural beneficial uses. Four water samples were analyzed for Title 22 metals. None of the analyses were above the primary MCL. **Figure 5-24** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
2H4	11/16/2021	Both	112	2200	717	183	0.8
29B2	10/4/2021	Lower	5.7	780	157	122	0.2
1M2	11/16/2021	Lower	ND	940	204	149	0.3
1D8	11/16/2021	Lower	ND	1120	197	192	ND
4R2	11/16/2021	Lower	18.7	820	248	78	0.3
15D2	11/18/2021	Lower	5.2	1400	474	160	0.5
10G1	11/18/2021	Lower	1.2	950	226	147	0.6
3R1	11/18/2021	Lower	31.5	1820	587	191	0.7
4K1	11/18/2021	Lower	ND	870	238	96	0.4
34G1	11/18/2021	Lower	ND	1180	261	169	0.8
33R2	12/2/2021	Lower	0.2	670	207	61	0.2
34C1	12/2/2021	Lower	0.2	770	279	83	0.3
19L5	12/7/2021	Lower	1.5	1560	586	120	0.7
3K1	11/18/21	Lower	25.7	1190	371	188	0.6
15H1	11/5/2021	Upper	ND	4620	1850	550	2.2
10A2	11/16/2021	Upper	83.2	2400	962	204	0.5
2J1	11/16/2021	Upper	239	4710	1720	422	1.7
12D1	12/1/2021	Upper	ND	2460	809	325	0.7
Notes:	•					•	•

Table 5-22: Selected water quality results for the Pleasant Valley Basin.

Notes:

1. mg/L = milligrams per liter 2. ND = not detected

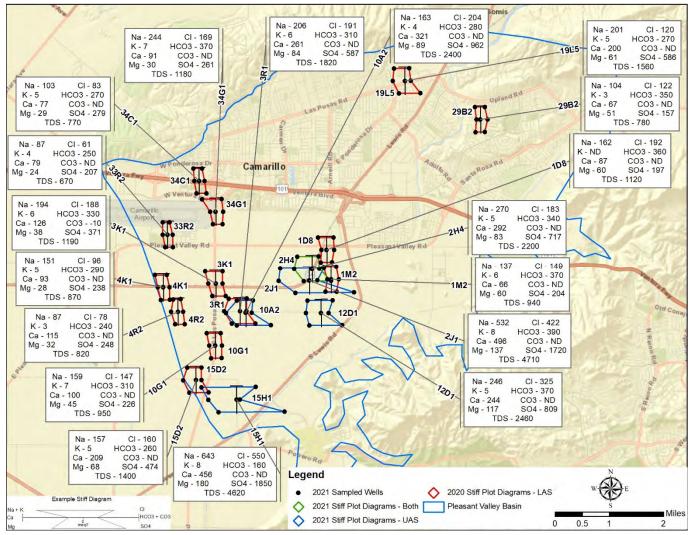


Figure 5-23: Pleasant Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Santa Clara Valley River Basin – Santa Paula Subbasin (DWR Basin No. 4-004.04)

The Santa Paula Subbasin is a court adjudicated groundwater basin. To mitigate overdraft, a June 1991 judgment ordered the creation of the Santa Paula Basin Pumpers Association (SPBPA). The SPBPA regulates extractions in the Santa Paula Subbasin. The judgment stipulated an allotment of 27,000 acrefeet per year could be pumped from the Subbasin. Water quality in the Subbasin has not changed substantially since 2007. The depth to the water-bearing unit is 65 to 160 feet. There are approximately 295 water supply wells in the Santa Paula Subbasin, of which 151 are active. Water samples from eight wells in the basin were analyzed in 2021. The Piper diagram, Figure E-14 shows no significant change in the water quality since previous sampling. Calcium is the dominant cation in three samples and there is no dominant cation in the remaining samples. Sulfate is the dominant anion; the water is calcium sulfate type. All eight samples had TDS and sulfate concentrations above the secondary MCL for drinking water (Table 5-24). Two samples were analyzed for Title 22 metals. No constituent was above the MCL. Figure 5-25 shows approximate well location and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for well sampled.

Figure E-20 compares water samples from the up-gradient Piru and Fillmore Subbasins to the Santa Paula Subbasin. The Piper diagram shows moderate variability among the samples. Filmore subbasin has higher variability than the Santa Paula and Piru subbasins, with higher calcium and lower sulfate concentrations but higher bicarbonate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
21E11	9/13/2021	ND	1440	568	109	0.7
17Q01	9/13/2021	20	1570	626	82	0.6
09K04	9/13/2021	ND	940	358	45	0.4
30F01	9/13/2021	1.5	1770	729	91	0.6
35Q01	9/22/2021	38	2630	1230	104	0.9
36K07	9/22/2021	0.7	1440	614	77	0.4
03K02	9/22/2021	5.2	1130	412	71	0.5
03E01	9/22/2021	1.4	2190	939	100	0.5
Notes:	1	1	1	1	1	

Table 5-23: Selected water quality results for the Santa Paula Subbasin.

1. mg/L = milligrams per liter

2. ND = not detected

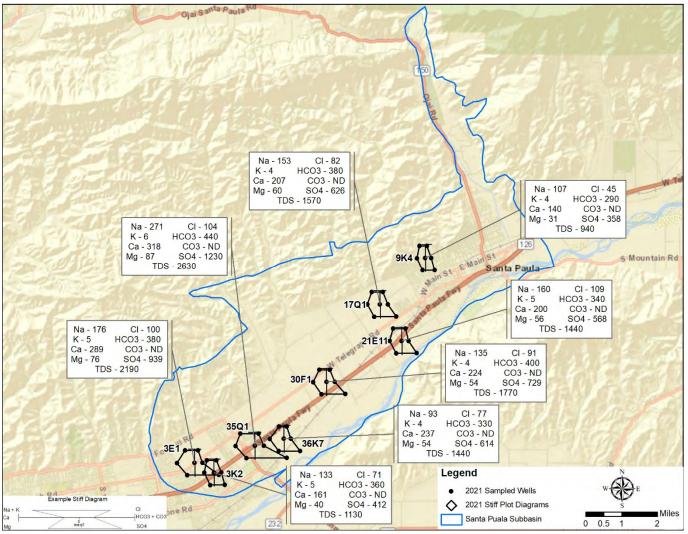


Figure 5-24: Santa Paula Subbasin sampled wells with Stiff diagrams and selected inorganic constituents.

Hidden Valley Basin (DWR Basin No. 4-016)

The Hidden Valley Basin consists mainly of fractured volcanic rock providing inconsistent groundwater supply throughout the basin because much of the water is stored in fractures. The water quality varies because of the heterogeneous nature of the aquifer. There are approximately 147 water supply wells in the basin, of which 96 are active. Water samples were collected from four wells in 2021. The Piper diagram in Figure E-27 shows the chemistry of the samples which is highly variable considering the size of the basin. Calcium is the dominant cation in two samples; sodium is the dominant cation in one sample; and magnesium is the dominant cation in one sample. Bicarbonate is the dominant anion in all samples. The water is calcium bicarbonate type in two samples, sodium bicarbonate in one sample and magnesium bicarbonate in the remaining sample.

TDS concentration was above the secondary MCL for three samples (Table 5-25). Three samples were analyzed for Title 22 metals. All constituents were below the MCL for drinking water except one sample had arsenic at the MCL limit. Figure 5-26 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
19H03	9/23/2021	ND	520	109	41	0.1
29E04	10/12/2021	ND	580	144	59	ND
25F04	10/19/2021	ND	350	36.6	32	0.1
25C01	10/19/2021	ND	1180	287	118	ND
Notes:	1	1		1	1	1

Table 5-24: Selected water quality results for the Carpinteria Basin

1. mg/L = milligrams per liter

2. ND = not detected

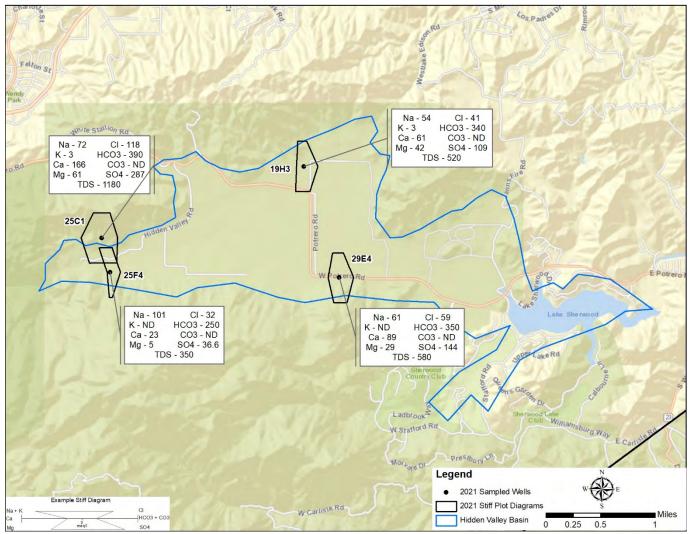


Figure 5-25: Hidden Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Simi Valley Basin (DWR Basin No. 4-009)

The Simi Valley Basin drains to the west and historically, groundwater quality becomes more enriched in salts and therefore is of poorer quality further west in the basin. The four wells sampled are in the western end of the valley. There are approximately 182 water supply wells in the Simi Valley Basin, of which 35 are active wells. Depth to the water-bearing unit is approximately 5 to 25 feet bgs. The City of Simi Valley has a high water-table at the western end of the valley and several dewatering wells operate as needed to reduce the water table. The Piper diagram, **Figure E-15** shows low variability in water quality. There is no dominant cation, but the samples plot closely to the calcium type. Sulfate is the dominant anion in all four samples and the water is calcium sulfate type. TDS and sulfate concentrations were above the secondary MCL in all four samples. One sample had a nitrate concentration above the MCL. All four samples had chloride concentrations that could cause impairment of agricultural beneficial uses for sensitive plants but were not above the primary MCL. One water sample was analyzed for Title 22 metals; all constituents were below the MCL. **Figure 5-27** shows approximate well locations and concentrations of TDS, sodium potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for wells sampled in the Simi Valley Basin.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
8D4	11/10/2021	18.7	1720	766	165	1.1
8K7	11/10/2021	56.7	2070	972	160	1
9E1	11/10/2021	29.1	1630	764	130	0.9
10A2	12/7/2021	60.8	1930	721	126	1.1
Notes: 1. mg/L = millio	rams per liter					L

Table 5-25: Selected water quality results for the Simi Valley Basin

2. ND = not detected

2. Rold numbers indicat

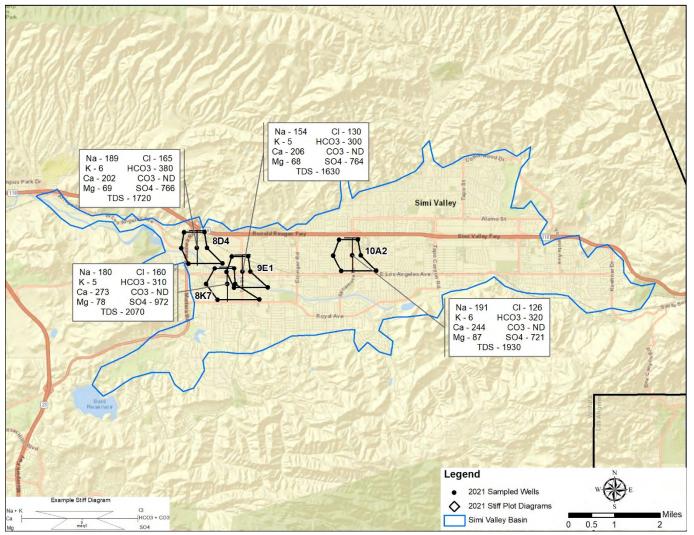


Figure 5-26: Simi Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Tapo/Gillibrand Basin

The Tapo/Gillibrand Basin is located to the north of Simi Valley. The Tapo/Gillibrand Basin is an east-west trending structural basin that consists of permeable sand and gravel that occur near the center of the Happy Camp Syncline. The basin is bounded by the Santa Susana Fault to the north, the Simi Anticline to the south and impermeable sediments of the Sisquoc Formation and Monterey Shale in the remaining areas. There are approximately 46 water supply wells in the Tapo/Gillibrand Basin, of which 14 are active. The City of Simi Valley operates several wells in the basin for backup water supply. One well was sampled in this basin in 2021.

The Piper diagram, **Figure E-29** shows low variability in water quality. Calcium is the dominant cation, Sulfate is the dominant anion in the sample. The water is calcium sulfate type. TDS and sulfate concentrations are above the secondary MCL in both samples. One sample had manganese above the MCL. One water sample was analyzed for Title 22 metals; all constituents were below the MCL. **Figure 5-28** shows approximate well locations and concentrations of TDS, sodium potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for wells sampled in the Simi Valley Basin.

Table 5-26: Selected	l water qualit	y results for the	e Simi Valle	y Basin.	
					Ĩ

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
24C7	11/10/2021	10.8	850	362	28	ND
Notes: 1. mg/L = millig 2. ND = not de				1		

2. ND = not detected

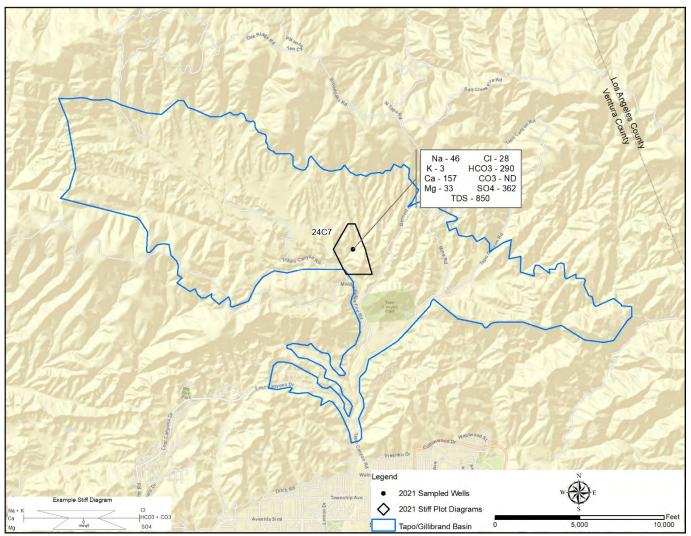


Figure 5-27: Tapo/Gillibrand Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Thousand Oaks Area Basin (DWR No. 4-019)

The Thousand Oaks Area Basin has very few active water wells available for sampling. The depth to the water-bearing unit is approximately 25 to 30 feet bgs. The groundwater basin underlies a small valley between Lake Sherwood and the City of Thousand Oaks, just east of Highway 23. Water-bearing formations are mainly alluvium and fractured Conejo Volcanics. There are approximately 119 water supply wells in the basin, of which 11 are active. No wells were sampled in this basin in 2021. **Figure 5-29** shows the extent of the Thousand Oaks Area Basin.

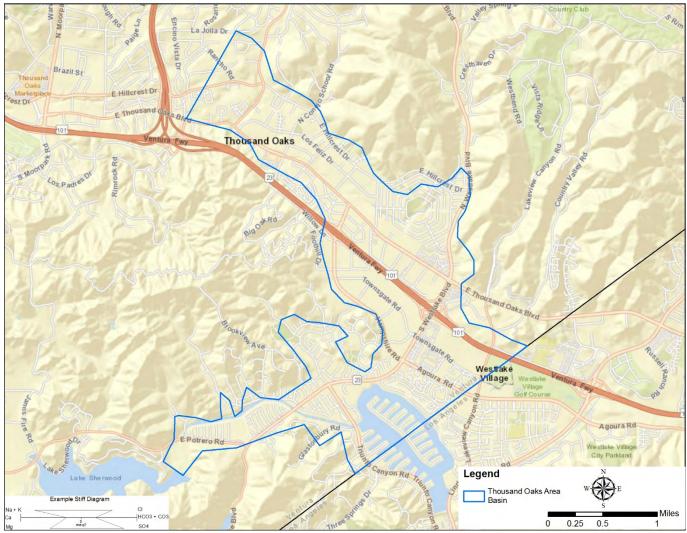


Figure 5-28: Thousand Oaks Area Basin.

Tierra Rejada Basin (DWR Basin No. 4-015)

Depth to water-bearing materials varies between 20 to 80 feet bgs. There are approximately 58 water supply wells in the Tierra Rejada Basin, of which 36 are active. Seven wells were sampled in 2021. The Piper diagram, **Figure E-16** shows low variation in water quality. There is no dominant cation. Bicarbonate is the dominant anion for one sample and the remainder have no dominant anion. Water samples from five wells are magnesium bicarbonate type, one well is magnesium sulfate type, and one well is calcium bicarbonate type. One well had a nitrate concentration above the primary MCL. Water from all seven wells had TDS concentrations above the secondary MCL, ranging from 640 to 1,250 mg/L. Three wells in the basin were analyzed for Title 22 metals and all constituents were below the primary MCL.

The Piper diagram, **Figure E-3** shows a comparison of water chemistry between Tierra Rejada and Arroyo Santa Rosa Basins. Chemistry in the two basins is similar but there is more variation in Tierra Rejada with slightly higher magnesium, bicarbonate and sulfate. **Figure 5-30** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
15N3	10/4/2021	0.9	700	164	80	ND
10R2	11/9/2021	9	680	174	76	ND
15B1	11/9/2021	3	640	152	81	ND
15J2	11/9/2021	34.4	1250	334	176	0.2
11J3	11/19/2021	22.4	700	147	58	0.2
14Q2	11/19/2021	ND	720	203	50	ND
14F1	12/1/2021	64.2	810	134	108	0.1

Table 5-27: Selected water quality results for the Tierra Rejada Basin.
--

Notes:

1. mg/L = milligrams per liter

2. ND = not detected

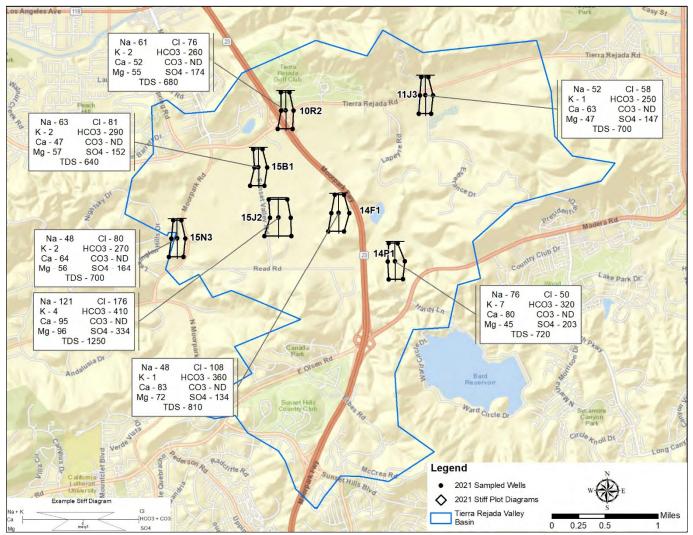


Figure 5-29: Tierra Rejada Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Figure 5-31 shows nitrate concentrations for wells sampled in the Tierra Rejada Basin in 2021. Groundwater from one well sampled has a nitrate concentration that exceeds the primary MCL. Other wells previously sampled with elevated nitrate concentrations were not available for sampling in 2021.

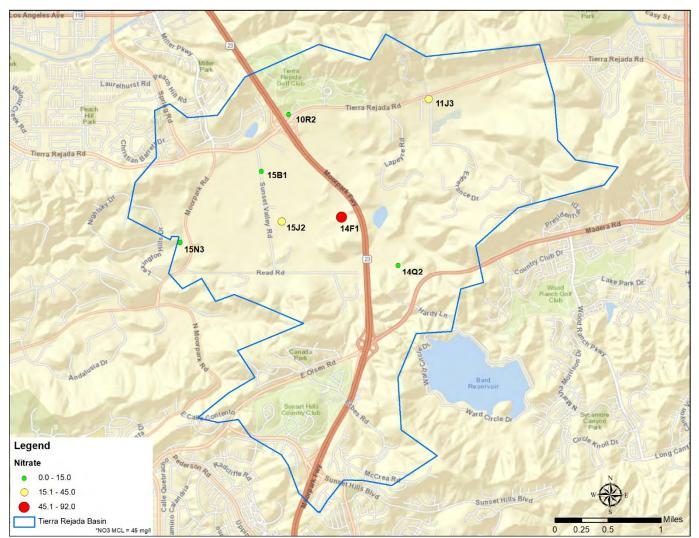


Figure 5-30: Tierra Rejada Basin location of sampled wells and nitrate concentrations.

Upper Ojai Valley Basin (DWR Basin No. 4-001)

The Upper Ojai Valley Basin is a small, linear valley southeast of and at a higher elevation than the Ojai Valley Basin. The average thickness of water-bearing deposits is approximately 60 feet and groundwater is encountered approximately 45 to 60 feet bgs. Groundwater guality is considered good but varies seasonally and usually has better quality during winter months. There are approximately 171 water supply wells in the Upper Ojai Valley Basin, of which 128 are active wells. Three wells were sampled in 2021. The Piper diagram, Figure E-17 shows some variation in the water quality of the wells. Calcium is the dominant cation in one sample, there is no dominant cation in the remaining samples. Bicarbonate is the dominant anion in all samples. The water in two samples is calcium bicarbonate type and sodium sulfate in one sample. Two samples had TDS concentrations above the secondary MCL for drinking water (Table 5-24) and one sample had nitrate concentration above the primary MCL.

Three water samples were analyzed for Title 22 metals and all constituents were below the primary MCL. Figure 5-32 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
11P2	10/14/2021	ND	240	3	14	ND
11J1	10/14/2021	53.4	450	90.8	38	ND
10K5	10/19/2021	11.9	970	199	122	0.4
Notes: 1. mg/L = milli	grams per liter					

Table 5-28. Selected Water Quality Results for the Upper Oiai Basin

2. ND = not detected

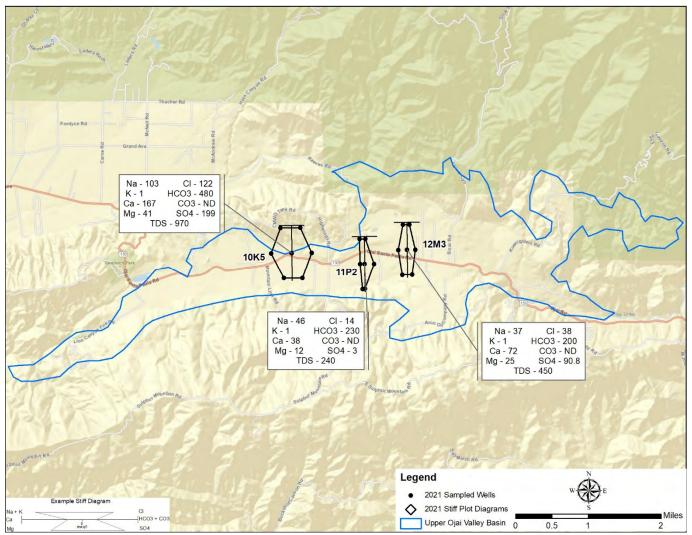
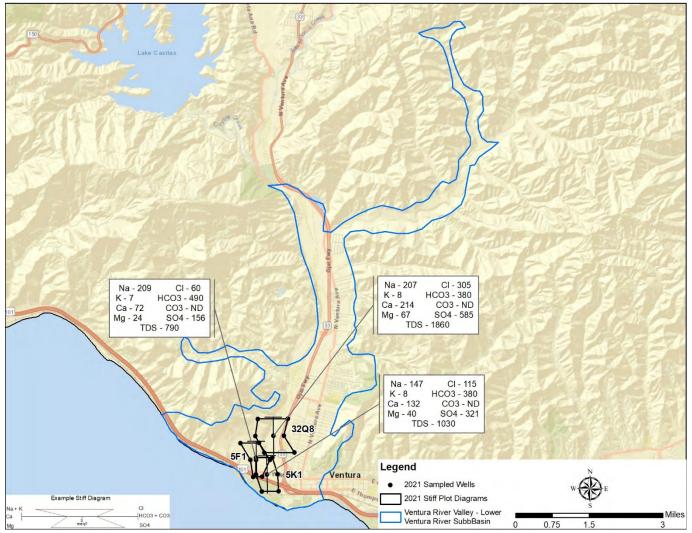


Figure 5-31: Upper Ojai Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Ventura River Valley Basin – Lower Ventura River Subbasin (DWR Basin No. 4-003.02)

The Lower Ventura River Subbasin is bounded on the north by the Upper Ventura River Subbasin and extends south to the Pacific Ocean. The subbasin shares a common boundary with the Mound Subbasin at its lower reach. Canada Larga and several smaller tributary canyons are also part of the subbasin. The water-bearing unit consists of alluvial sand and gravel with abundant cobbles and ranges in thickness from 60 to 200 feet and perhaps up to 300 feet at the mouth of the Ventura River. The subbasin has few remaining active wells available for sampling. Depth to the water-bearing unit is 3 to 13 feet bgs in the floodplain and deeper as the ground surface elevation increases toward the edges of the subbasin. There are approximately 34 wells in the Lower Ventura River Basin, of which 21 are active. Three wells were sampled in 2021. The Piper diagram, Figure E-18 shows the water quality of the samples. Sodium is the dominant cation in one sample. There is no dominant cation in the other samples. Bicarbonate is the dominant anion in one sample. There is no dominant anion in the other two samples. One water sample is sodium bicarbonate type, one sample is calcium sulfate type, and the remaining sample is sodium sulfate type. All three samples had TDS and two samples had sulfate concentrations that exceed the secondary MCL. One sample had a chloride concentration above the MCL for drinking water. All three samples had chloride concentrations that are above the level that could cause impairment of agricultural beneficial uses for sensitive plants.


One sample was analyzed for Title 22 metals. No constituents were above the MCL. Figure 5-43 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for the well. Figure 5-33 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

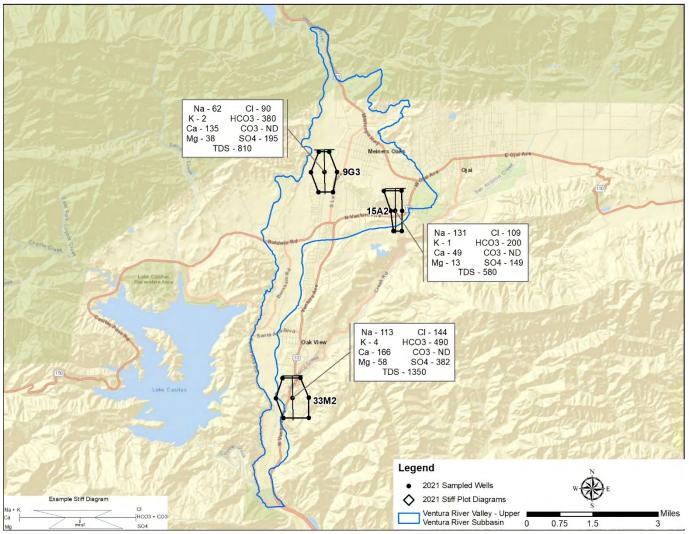
Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
5K1	09/15/2021	ND	1030	321	115	0.7
32Q8	09/15/2021	ND	1860	585	305	0.8
5F1	09/15/2021	ND	790	156	60	0.6
Notes:		1		1	1	1

Table 5-29: Selected water quality results for the Lower Ventura River Subbasin.

1. mg/L = milligrams per liter

2. ND = not detected

Figure 5-32: Ventura River Valley – Lower Ventura River Subbasin sampled well with Stiff diagram and selected inorganic constituents.


Ventura River Valley Basin – Upper Ventura River Subbasin (DWR Basin No. 4-003.01)

The Upper Ventura River Subbasin is mainly composed of thin alluvial deposits. There are approximately 202 water supply wells in the Upper Ventura River Subbasin, of which 118 are active. Two wells within the basin and one well just outside the basin were sampled in 2021. The Piper diagram, Figure E-19 shows moderate variation in water quality among the samples. The dominant cation in two samples is calcium and the dominant cation in one sample is sodium. The dominant anion in one sample is bicarbonate and one sample is sulfate type. Two samples have no dominant anion. The water in two samples is calcium bicarbonate and, one sample is sodium bicarbonate type.

All three water samples had TDS concentrations that exceed the secondary MCL; one sample had a sulfate concentration that exceeded the secondary MCL. No wells were analyzed for Title 22 metals. Figure 5-34 shows the approximate well location and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for the well.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)	
9G3	09/17/2021	37.7	810	195	90	0.4	
15A2	09/17/2021	13.2	580	149	109	0.4	
33M2 (outside 09/17/2021 ND 1350 382 144 0.6							
2. $ND = not de$	grams per liter etected	antration above r					

Table 5-30: Selected water quality results for the Upper Ventura River Subbasin.

<u>Figure 5-33</u>: Ventura River Valley – Upper Ventura River Subbasin sampled well with Stiff diagram and selected inorganic constituents.

6.0 **Groundwater Elevations**

Groundwater elevations are measured in production and monitoring wells throughout the County. Water levels are tracked to determine change in storage and trends in groundwater extraction and recharge. Elevation data are shared with and provided by other organizations and agencies. The data are also used to generate groundwater elevation maps to determine the direction of groundwater movement. Collected data are publicly available.

In 2021 approximately 200 wells throughout the County (**Figures 6-1 and 6-2**) were gauged, including seventeen designated as "key" wells, considered to represent groundwater elevations over a broad area of the groundwater basin. Key wells⁷ were chosen based on location in a basin, availability of construction information and historical water level data. Water levels are measured quarterly in the southern half of the County and water levels in the northern half are measured bi-annually.

Gauged wells include abandoned wells that are not in operation and active wells that were not pumping for at least 24 hours prior to water level gauging. The same wells are attempted to be gauged each year. Well availability is dependent on owner permissions and times of operation. When a well is not available for gauging, an alternative well is identified. Replacement wells must be nearby, of a similar depth and have the same perforation intervals.

⁷ Appendix B includes the location of key wells, water level changes and hydrographs.

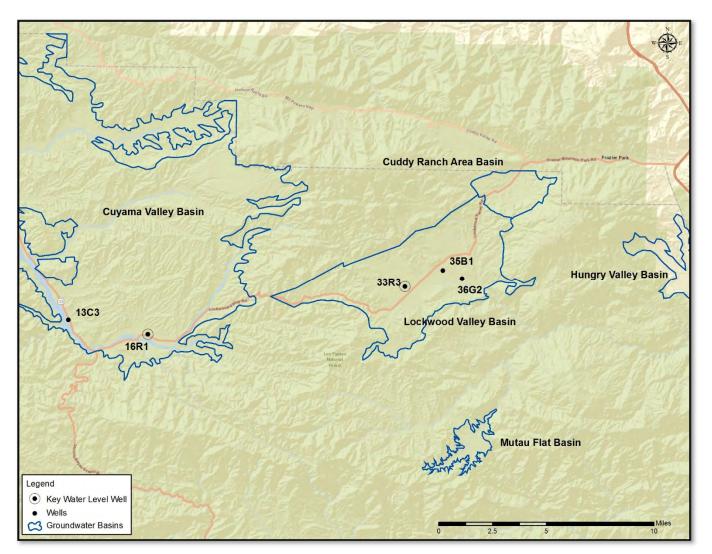


Figure 6-1: Water level wells measured in the northern half of the County.

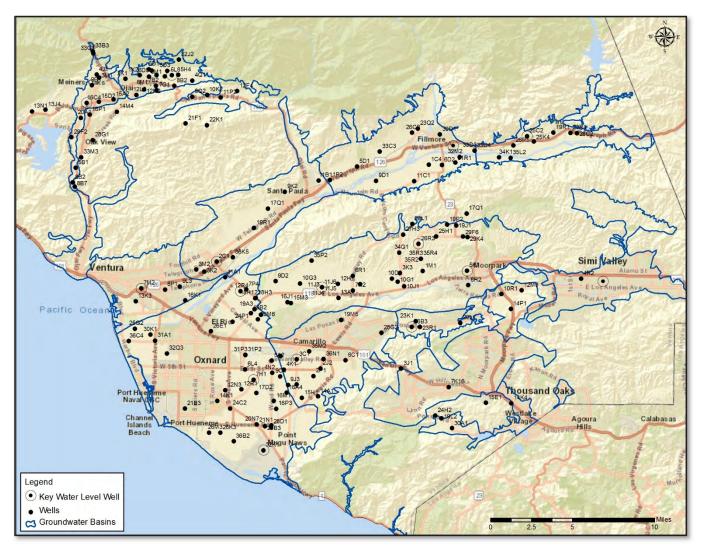
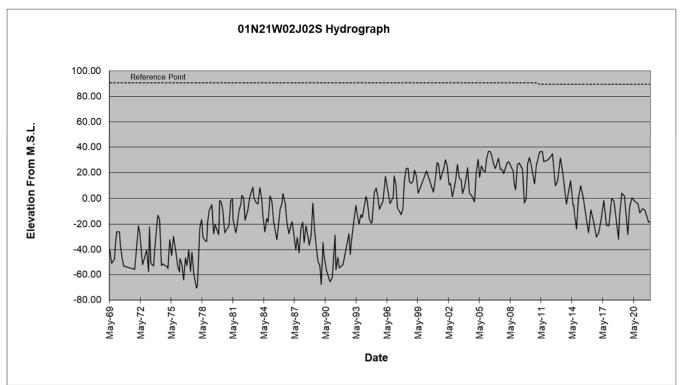



Figure 6-2: Water level wells measured in the southern half of the County.

Water Level Hydrographs

The gauged wells include wells that are not in operation and active wells that were not pumping for at least 24 hours prior to water level gauging. The same wells are consistently gauged; however, alternative wells are substituted when primary wells cannot be gauged. The data along with climate, stream flow, groundwater recharge, groundwater quality and pumping data are used to evaluate groundwater conditions. Hydrographs for all key wells are shown in **Appendix B**. An example hydrograph for Well No. 01N21W02J02S is shown in **Figure 6-3**.

Figure 6-3: Hydrograph showing the groundwater elevation through time for Well No. 01N21W02J02S, located in the Pleasant Valley Basin.

*reference point = the elevation of the measuring point of the well.

Spring Groundwater Elevation Changes in Key Wells

Locations of each key well are shown in **Figure 6-4**. Key water level changes for the largest groundwater basins are summarized in **Table 6-1**. The information is used to track depth to groundwater trends. Spring season measurements are used for comparison since this time period is typically at the end of the seasonal rainfall year when groundwater basins are typically full. The measurements in the table are static water level measurements, in feet below the reference point, obtained after the water pump has been off for a minimum of 24 hours prior to gauging. In general, recent groundwater levels in Ventura County have shown a downward trend due to exceptional drought conditions and increased extraction of groundwater.

Hydrographs (line graphs) of individual key wells are presented in **Appendix B**. Hydrographs show changes in groundwater elevation relative to mean sea level and are measured in feet bgs or a specific reference point (RP), typically on the magnetic north side at the top of the well casing or the concrete slab at the wellhead. The hydrographs are accompanied by a bar graph to track changes from the previous year.

Figure 6-4: Key water level wells in Ventura County.

	A	AT KEY WEL	LS IN VENTU	RA COUNTY			
			TORIC				
Groundwater Basin	WELL NUMBER	RECOR D HIGH (ft.)	RECORD LOW (ft.)	LEVEL (ft.)	LEVEL (ft.)	LEVEL (ft.)	Change From Previous Year (ft.)
	(Period of RECORD)	(DATE)	(DATE)	(YEAR 2019)	(YEAR 2020)	(YEAR 2021)	(UP/DOWN
Oxnard Plain				/			
	01N21W07H01S	3.4	88.4	56.3	46.4	48.1	DOWN 1.7
Oxnard Aquifer	(Jan.1931-present)	(3/1999)	(9/1964)	(3/13)	(3/26)	(3/9)	
	01N21W32K01S	18	129	60.7	67.4	74.0	DOWN 6.6
Fox Canyon Aquifer	(Dec. 1972-present)	(4/1983)	(12/1990)	(3/18)	(3/16)	(3/15)	
Forebay Management	02N22W12R04S	16.2 ft.	Dry	106.14	108.75	125	DOWN 16.3
Area (Measured By UWCD)	(Mar 1996-present)	(5/2006)	(7/2014 - ?)	(4/16)	(3/26)	(3/16)	
Pleasant Valley Lower	01N21W03C01S	87.5	253.9	153.9	146.5	157.3	DOWN 10.8
System	(Feb.1973-present)	(8/1995)	(11/1991)	(3/15)	(3/26)	(3/9)	
	02N21W11J04S	368.4	406.2	407.7	410.2	419.1	DOWN 8.9
West Las Posas	(Jan.1991 - Present)	(6/2006)	(9/2016)	(3/25)	(4/3)	(3/9)	
East Las Posas	03N20W35R02S	352.6	487.4	423.8	419.5	428.5	DOWN 9.0
	(Oct. 1992-present)	(2/2005)	(6/2010)	(3/25)	(6/10)	(3/10)	
	02N20W26B03S	13.2	60.3	54.5	52.7	43.7	UP 9.0
Santa Rosa Valley	(Oct.1972-present)	(4/1979)	(11/2004)	(6/5)	(3/31)	(3/17)	
0	02N18W10A02S	45	92	86.3	85.8	92.8	DOWN 7.0
Simi Valley	(Dec.1984-present)	(2/1998)	(6/1992)	(3/29)	(3/27)	(3/26)	
	04N23W16C04S	3.9	101.9	39.3	44	44.7	DOWN 0.7
Ventura River	(July 1949-present)	(3/1983)	(12/2016)	(3/20)	(3/2)	(3/2)	
<u> </u>	04N22W05L08S	38.2	312	160.1	142.9	196.4	DOWN 53.
Ojai Valley	(Oct.1949 - Present)	(4/1978)	(9/1951)	(4/1)	(3/3)	(3/16)	
Mound (Measured by	02N22W07M02S	126.6	176.2	173.7	171.9	171.5	UP 0.4
UWCD)	(Apr.1996-present)	(4/1998)	(4/1996)	(3/6)	(3/12)	(3/17)	
0	03N21W17Q01S	80.2	140.3	98.51	101.8	105.75	DOWN 4.0
Santa Paula	(Oct.1972-present)	(4/1983)	(12/1998)	(3/12)	(3/6)	(3/18)	
	03N20W05D01S	107.8	163.7	131.8	131.9	136.3	DOWN 4.4
Fillmore	(Oct.1972 - Present)	(2/1979)	(1219/77)	(3/12)	(3/6)	(3/18)	
-	04N19W25C02S	43.1	183.2	94.6	71	79.2	DOWN 8.2
Piru	(Sep.1961-present)	(3/1993)	(10/1965)	(3/11)	(3/9)	(3/18)	
	08N21W33R03S	17.5 ft.	59.6 ft.	52.3	59.6	57.2	UP 2.4
Lockwood Valley	(April1966-present)	(9/1998)	(4/2020)	(4/19)	(4/24)	(4/30)	
	07N23W16R01S	15.0	47.5	26.1	24.7	25.9	DOWN 1.2
Cuyama Valley	(Mar.1972-present)	(4/1993)	(9/1990)	(4/19)	(4/24)	(4/1)	

Data prepared: 2/15/2022

The following summary is based on information gathered from key wells as shown in Table 6-1.

The Forebay Management Area of the Oxnard Subbasin responds quickly to seasonal and annual changes in precipitation and recharge. The Forebay Area key well (UWCD monitoring well) was down 16.3 feet from the 2020 spring measurement and was dry.

The water level in the Oxnard Subbasin, Oxnard Aquifer key well was up 1.7 feet from the previous spring. The water level in the Oxnard Subbasin, Fox Canyon Aquifer key well was down 6.6 feet from the 2020 spring measurement.

In the Pleasant Valley lower aquifer system, the water level in the key well was down 10.8 feet from spring 2020.

In the Las Posas Valley Basin, the EMA key well water level was down 9.0 feet from 2020. The key well for the WMA was down 8.9 feet from 2020.

In the Arroyo Santa Rosa Valley Basin, the water level was up 9.0 feet from 2020. The water level in the Simi Valley Basin key Well was down 7.0 feet from 2020. The water level in the Simi Valley key well has been on a downward trend over the last ten years (2012-2021).

In the northern portion of the Upper Ventura River Subbasin, the water level in key Well No. 04N23W16C04S was down 0.7 feet from 2020. In the Ojai Valley Basin, the water level in key Well No. 04N22W05L08S was down 53.5 feet from 2020. The Ojai Valley Basin responds quickly to rainfall or the lack of rainfall, and it is not uncommon to see large drops in water levels during dry periods and recovery at, or above, normal levels during wet periods (see Hydrograph in **Appendix B**).

The subbasins that underlie the Santa Clara River Valley also respond quickly to fluctuations in annual rainfall. The water level elevation in the Piru Subbasin key well was down 8.2 feet from 2020. The water level in the Fillmore Subbasin key well was down 4.4 feet, and in the Santa Paula Subbasin the water level in the key well was down 4.0 feet from 2020. In the Mound Subbasin the water level in key Well No. 02N22W07M02S was up 0.4 feet from 2020.

In the northern half of the County, the Lockwood Valley Basin key Well No. 08N21W33R03S was up 2.4 feet from 2020. The water level in the Cuyama Valley Basin key Well No. 07N23W16R01S was down 1.2 feet from 2020.

Potentiometric Surface Maps

Potentiometric surface maps (groundwater elevation maps) are used to visually represent groundwater elevations over specific geographic areas. Potentiometric surface maps are constructed from groundwater elevation data collected in spring and fall periods at County gauged wells and those gauged by other organizations/agencies.

Generalized potentiometric surface maps created from 2021 groundwater elevation data include:

- a) The Santa Clara River Valley Basin,
- b) The UAS of the Oxnard Subbasin and Pleasant Valley Basin, and
- c) The LAS of the Oxnard Subbasin, Pleasant Valley, and Las Posas Valley Basins.

Figures 6-5 and 6-6 depict the Santa Clara River Valley Basin that encompasses the Mound, Santa Paula, Fillmore and Piru groundwater Subbasins. The basin area was truncated to include only the extent of the alluvial area of the valley instead of the full groundwater basin boundary.

Figures 6-7 and 6-8 depict the UAS of the Oxnard Subbasin and Pleasant Valley Basin area.

In the Pleasant Valley Basin, the UAS is not typically present, but there are areas of shallow alluvial sediments similar to Oxnard and Mugu Aquifer units from which wells are extracting groundwater. Well data from the perched or semi-perched zone of the Oxnard Subbasin was not used to generate these contours. Some water levels represent confined conditions.

Figures 6-9 and 6-10 depict the LAS of the Oxnard Subbasin, Pleasant Valley and Las Posas Valley Basins. The Moorpark anticline was used in previous Annual Reports as a boundary between the East and South Las Posas Basins. The South Las Posas Basin is no longer recognized, and the Las Posas Valley Basin is divided into the East and West Las Posas Management Areas (ELPMA and WLPMA, respectively). The potentiometric surface is mapped to reflect a "no-flow" barrier between the ELPMA and WLPMA. Data from wells perforated in the shallow sand and gravel zones of the Las Posas Valley were not used to generate these contours.

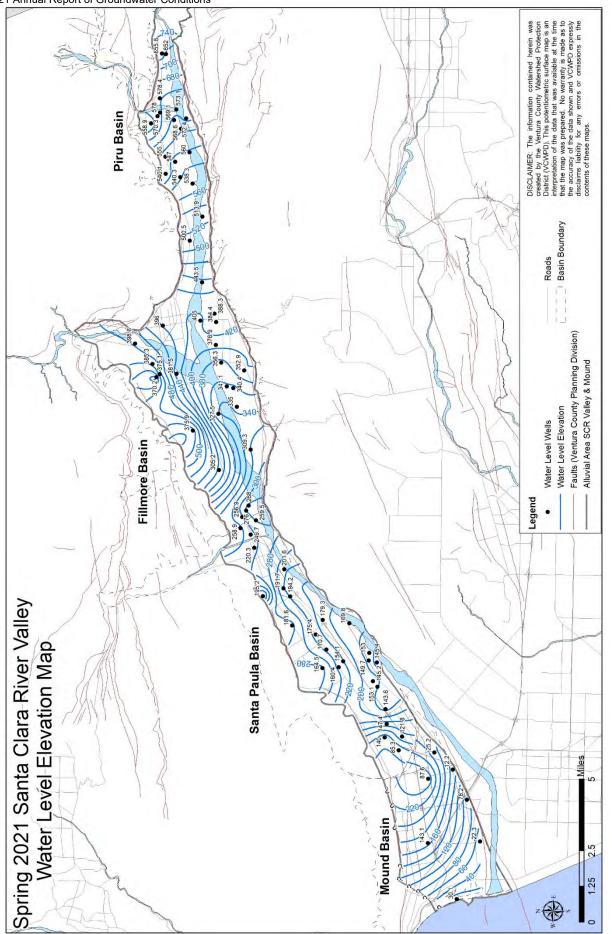
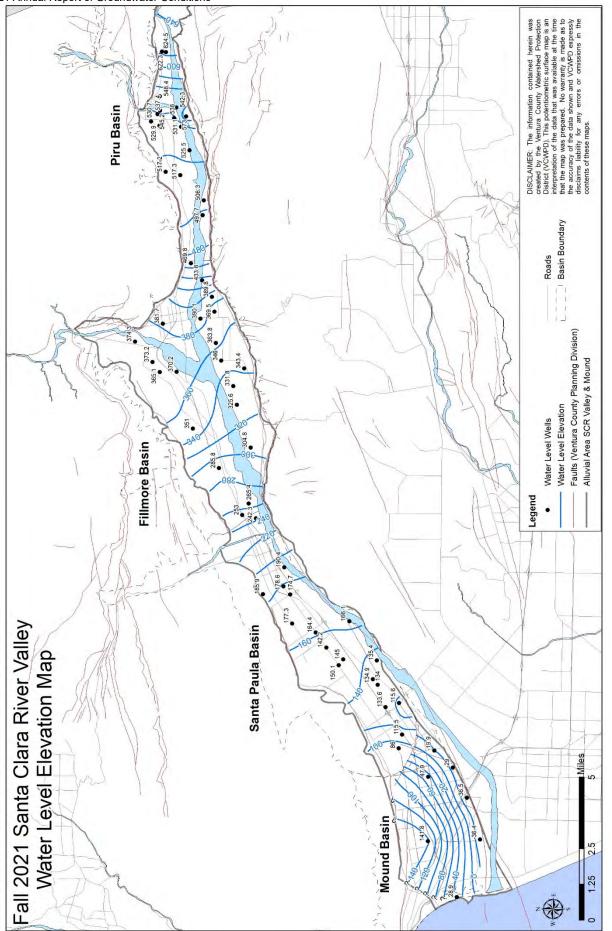
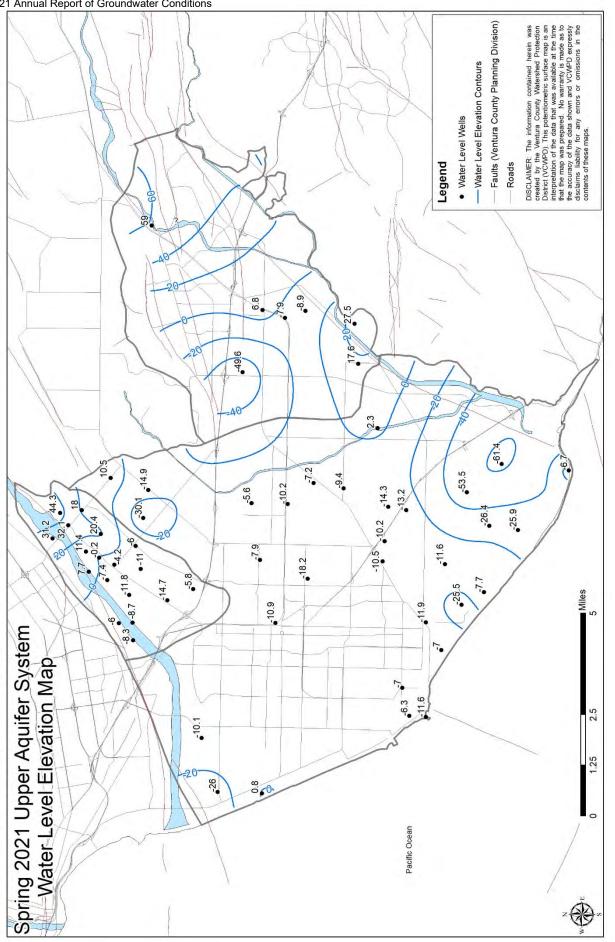
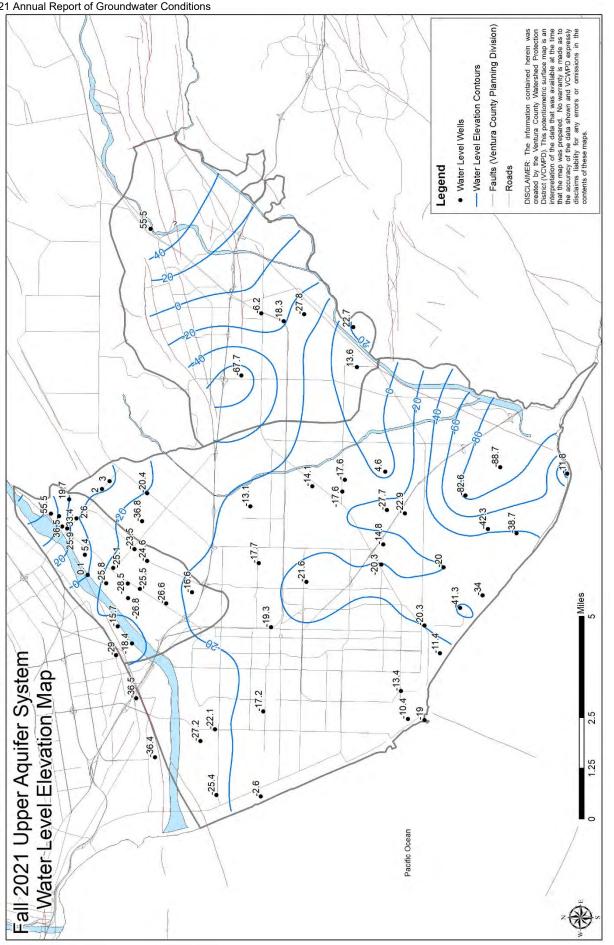
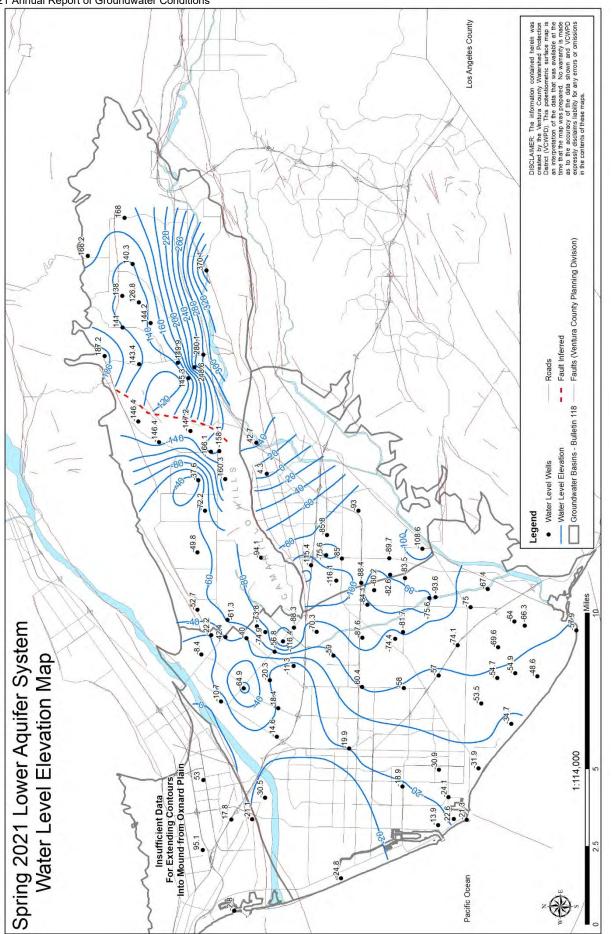
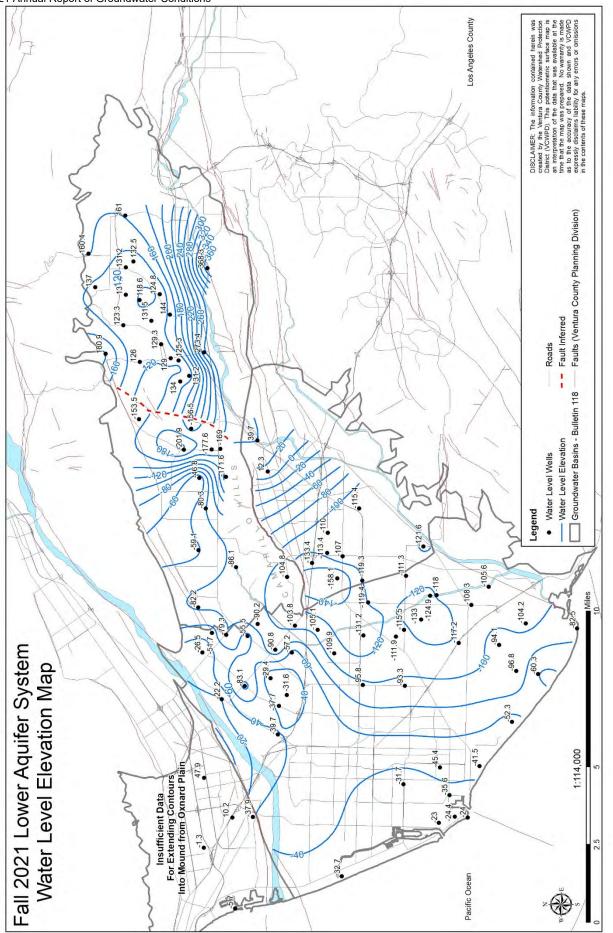


Figure 6-5: Water level surface elevation contours for the Santa Clara River Valley Basin for spring 2021.


Figure 6-6: Water level surface elevation contours for the Santa Clara River Valley Basin for fall 2021.





California Statewide Elevation Monitoring Program (CASGEM)

The CASGEM Program was developed by the DWR in response to the passing of Senate Bill X7 6 and Assembly Bill 1152 in November 2009. The law directs that groundwater elevations in all basins and subbasins in California be regularly and systematically monitored, preferably by local entities, with the goal of reporting seasonal and long-term trends in groundwater elevations. Resulting information available to the public from DWR. The CASGEM program established a permanent, locally-managed system to monitor groundwater elevation in California's alluvial groundwater basins and subbasins identified in DWR Bulletin No. 118. The CASGEM program relies and builds on locally established, long-term groundwater monitoring and management programs.

VCWPD acts as the Umbrella Monitoring Entity for Ventura County by coordinating and reporting groundwater elevation data collected by multiple agencies within a basin. The Groundwater Section staff collect groundwater level data quarterly or semi-annually, depending on location. Water level data is compiled and uploaded to the CASGEM website.

CASGEM reporting is being replaced by reporting to the Sustainable Groundwater Management Act reporting portal for those basins that require a Groundwater Sustainability Agency (GSA) and Groundwater Sustainability Plan (GSP). As GSA's adopt GSP's their reporting is moved from CASGEM to the SGMA portal. There is no one umbrella monitoring entity for the SGMA portal. Individual GSA's are responsible for data reporting. The County will remain the reporting entity for those basins that remain in the CASGEM system. As of the end of 2021 reporting for Oxnard, Pleasant Valley and Las Posas basins has been moved from CASGEM to the SGMA portal.

7.0 Water Supplies

Groundwater Extractions

There are approximately 3,500 active wells in the County that extract groundwater for agricultural, domestic, municipal and industrial uses. Three groundwater management agencies (GMAs) (FCGMA, OBGMA, and UWCD) in Ventura County oversee groundwater extractions within their statutory boundaries (**Figure 7-1**).

Of the total active wells in the County, approximately 2,000 are within one or more of these agency boundaries. Owners and operators within the boundaries of a GMA are required to report groundwater extractions to their respective agency. Owners outside of a groundwater management agency boundary are not required to report extractions but are asked to report well statuses to the County through an *Annual Water Well Usage Statement*.

The FCGMA reports that approximately 60% of groundwater extracted within the Agency is used for agricultural purposes with the remaining 40% for municipal, industrial and domestic uses. **Table 7-1** compares extractions reported to the three agencies for the years 2012 through 2021. Wells located in overlapping agency boundaries must report their extractions to two agencies. This leads to uncertainty in the total volume of groundwater extracted in the County because the reported extractions cannot be combined. **Figure 7-1** shows the overlap area of the FCGMA and UWCD.

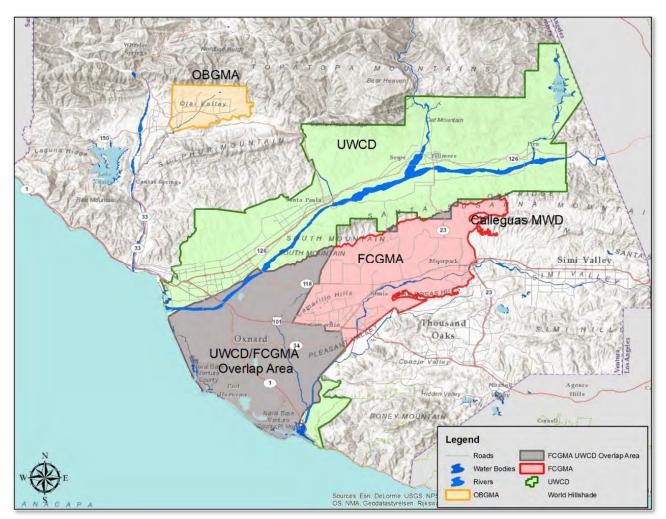


Figure 7-1: Groundwater Management Agencies in Ventura County.

	Agency		
Reported Extractions (AF)	UWCD	FCGMA	OBGMA
2012-1	78,716.61	59,904.02	2,845.56
2012-2	99,285.26	75,327.91	2,559.40
Annual Total 2012	178,001.87	135,231.94	5,404.96
2013-1	87,336.86	64,751.13	2,805.76
2013-2	116,708.94	88,957.84	2663.216
Annual Total 2013	204,045.80	153,708.97	5,468.97
2014-1	101,577.29	85,233.43	2,232.15
2014-2	101,468.80	65,731.43	2,144.20
Annual Total 2014	203,046.09	150,964.86	4,376.35
2015-1	85,905.46	71,411.15	1,817.92
2015-2	107,590.82	70,810.82	1,901.51
Annual Total 2015	193,496.28	142,221.97	3,719.43
2016-1	82,315.09	69,823.38	1,461.22
2016-2	100,801.24	64,323.08	1,424.93
Annual Total 2016	183,116.33	134,146.46	2,886.15
2017-1	69,854.68	58,467.95	1,659.09
2017-2	113,402.30	72,062.56	2,855.32
Annual Total 2017	183,256.98	130,530.51	4,514.41
2018-1	75,041.90	64,063.56	
2018-2	94,195.78	62,312.00	
Annual Total 2018	169,237.68	123,419.79	4,224.03
2019-1	57,335.53	51,722.44	
2019-2	91,649.71	61,986.53	
Annual Total 2019	148,985.24	113,708.97	4,465.95
2020-1	65,245.38	55,940.66	
2020-2	99,735.12	41,965.62	
Annual Total 2020	164,980.50	97,906.27	4,637.82
2021-1**	84,034.86	63,307.32	2,024.97
2021-2**	92,151.60	57,112.92	1,455.68
Annual Total 2021**	176,186.46	120,420.24	3,480.65
JWCD as 06/28/2022		FCGMA as of 08/17/	/2022

Table 7-1: Groundwater	extractions within	reporting age	encies 2012 through 2021 ^{8,9,12}

**Values are subject to change. For the most up to date data please contact the respective agency.

Wholesale Districts

Surface and imported water is supplied by three wholesale water districts in the County (Figure 7-2):

- 1. Casitas Municipal Water District (Casitas),
- 2. Calleguas Municipal Water District (Calleguas), and
- 3. United Water Conservation District (UWCD).

⁸ Data courtesy of FCGMA.

⁹ Data courtesy of OBGMA.

Figure 7-2: Wholesale Water District Boundary Map.

Calleguas delivers the largest volume of water to retailers. Approximately 75% of the population in the County receives a mix of imported State Water Project (SWP) water and Colorado River water from Calleguas. Water from the SWP comes from Northern California by way of an extensive water system owned and operated by the Metropolitan Water District (MWD) of Southern California, a regional wholesaler. MWD supplies imported water to Calleguas. Calleguas imported a total of 95,059.3 AF of treated water in 2021. Calleguas delivered 92,922.5 AF of water to retailers in 2021 compared to 89,631.5.10 AF in 2021. Production from the District's Aquifer Storage and Recovery (ASR) wellfield was 1,141.5 AF in 2021. Some imported water is also injected in the East Las Posas Management Area through the Las Posas (ASR) Project. In the ASR wellfield 3,457.07 AF of water was injected in 2021. Up to 11,000 AF of water can be stored by Calleguas in Lake Bard and supply the District's needs for short periods of time. The end of year water volume in storage in Lake Bard was 10,250 AF¹⁰. The Las Posas Basin ASR wellfield currently has 18 wells, operated by Calleguas. The wells are 800 to 1,200 feet deep and perforate the Fox Canyon Aquifer (Calleguas 2007).

UWCD delivered 20,834 AF of water to retailers and end-users in 2021, down from 22,635 AF in 2020. UWCD can store up to 87,000 AF of water in Lake Piru. At the end of 2021 there was 18,074 AF of stored water in Lake Piru. UWCD released 5,526 (*preliminary data*) AF of water from the lake in 2021. UWCD

¹⁰ Data provided courtesy of Calleguas MWD.

imported 3,782 AF of SWP water into Ventura County from Pyramid Lake in 2021. Water released from Lake Piru flows down Piru Creek to the Santa Clara River where it is ultimately diverted downstream at the Freeman Diversion Dam. UWCD operates spreading basins in the Oxnard Basin Forebay Management Area for the purpose of groundwater recharge. Some of the water diverted from the Santa Clara River at the Freeman Diversion is sent to the Forebay spreading basins in Saticoy and El Rio, the remainder is sent through the Pleasant Valley Pipeline (PVP) and the Pumping Trough Pipeline (PTP). **Table 7-2** and **Figure 7-4** compare the volume of water diverted and sent to spreading grounds by UWCD¹¹. Annual precipitation for the period of 2012 to 2021 is also shown, however recharge to basins is a function of SWP deliveries and restrictions from other agencies.

CY Year	Precipitation El Rio Spreading Grounds Gage 239(in.)	Saticoy Recharge (AF)	El Rio Recharge (AF)	Noble Pit (AF)
2012	8.79	3,985	16,293	538
2013	2.97	34	2,389	263
2014	9.50	387	1,935	578
2015	5.09	1,231	1,285	0
2016	10.00	1,784	806	59
2017	15.22	3,100	6,043	1,036
2018	9.52	2,301	1,205	212
2019	23.71	16,121	20,976	3,008
2020	6.96	8,847	22,075	0
2021	12.35	4,175	7,118	0

Table 6-2: Comparison of precipitation versus recharge water volume by Calendar Year for UWCD.

¹¹ Data provided courtesy of UWCD is preliminary and subject to change per UWCD. Freeman Diversion data from UWCD operations logs.

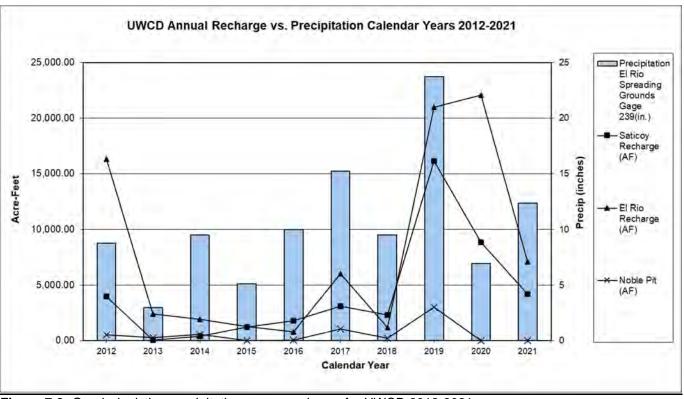


Figure 7-3: Graph depicting precipitation versus recharge for UWCD 2012-2021.

Casitas delivered approximately 13,233 AF in 2021 up from 11,842 AF in 2020, with 4,570.7 AF sold to retail water purveyors. The district provides water to residential and agricultural customers, and some of the 23 water purveyors located within the district's boundaries. Annual water deliveries can vary from 8,000 to 23,000 AF. Casitas provides a blend of groundwater and surface water to its customers. Surface water is stored in Lake Casitas which has an overall capacity of 238,000 AF. At the end of 2021, 81,684 AF of water was stored in the lake. Water from the Ventura River is diverted at the Robles Diversion facility. The facility diverts high flows from rainstorms and operates on average only 53 days per year. Casitas diverts, on average 31% of the Ventura River flow, with 10% of that volume being redirected downstream through the Robles Diversion Fish Passage for the endangered steelhead trout and to enhance recovery of the Ventura River habitat¹².

¹² Data provided courtesy of Casitas MWD.

Year	Total Water Deliveries in Acre Feet (AF)				
	Casitas MWD	Calleguas MWD	United WCD	Annual Total	
2012	15,268	104,104	32,638	152,010	
2013	18,270	111,283	24,358	153,911	
2014	18,336	106,293	17,492	142,121	
2015	16,272	89,045	16,293	121,609	
2016	12,793	87,542	16,757	117,092	
2017	12,166	89,666	16,613	118,445	
2018	12,168	91,340	16,953	120,461	
2019	8,490	82,237	16,689	107,416	
2020	11,842	89,632	21,048	122,522	
2021	13,233	92,923	20,834	126,990	
Period Total	138,838	944,064	199,675	1,282,577	

Table 7-3: Comparison of wholesale district water deliveries 2012-2021.

Surface Water

Surface water resources can be hydrologically linked to groundwater resources. The connection between surface water and groundwater is understood by natural recharge of aquifers from surface water (losing streams), and discharge of groundwater to surface water (gaining streams). Surface water diversions allow for use of surface water instead of extracted groundwater. Surface water is used to artificially recharge groundwater.

Figure 6-4 shows the volume of stored surface water and diverted surface water. In 2021, UWCD released approximately 5,526 AF of water from Lake Piru, including a fish passage requirement of 5 cubic feet per second (cfs) per day. UWCD diverted 13,989 AF from the Santa Clara River at the Freeman Diversion Dam with 4,175 AF sent to the Saticoy Spreading Grounds, 7,118 AF sent to the El Rio Spreading Grounds and 0 AF sent to the Noble Pit, with some surface water also going to agricultural customers through the PTP and the PVP. At the end of 2021 there was 18,074 AF of water in storage in Lake Piru, 81,684 AF in Lake Casitas and 10,250 AF in Lake Bard. Casitas releases 3,200 AF per year from Lake Casitas for the Robles Diversion Fish Passage.

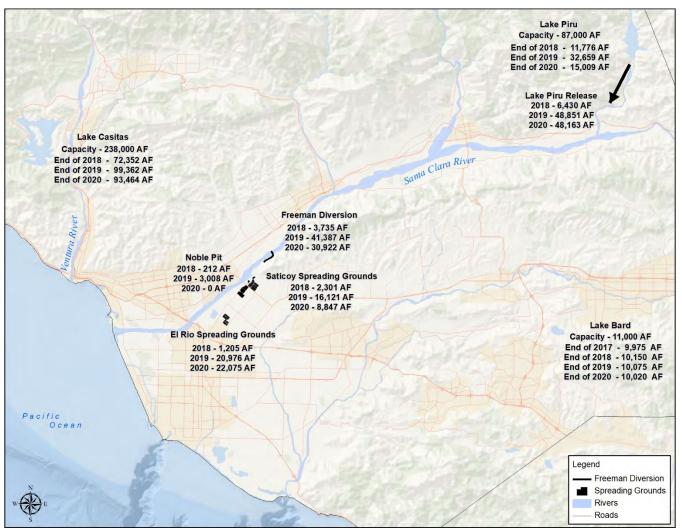


Figure 7-4: Surface water storage and diversion map^{11, 12, 13}.

Surface & Imported Water Demands

Of the ten incorporated cities within Ventura County only Santa Paula and Fillmore do not rely on water supplied by the three major wholesale districts.

The cities of Ventura and Oxnard use a blend of imported water, groundwater and treated surface water to meet demands. The City of Ventura's water supply comes from treated water diverted from the Ventura River, groundwater extracted from City wells and surface water from Lake Casitas delivered by Casitas. The City of Oxnard receives water from UWCD, imported water from Calleguas Municipal Water District and groundwater from City well fields.

In the southern half of the County, the cities of Simi Valley, Moorpark and Thousand Oaks as well as the communities of Bell Canyon, Newbury Park, Hidden Valley, Lake Sherwood, Oak Park and part of Westlake Village rely mainly on water imported from Calleguas.

The City of Simi Valley receives water from Ventura County Water Works District No. 8 (VCWWD8). VCWWD8 extracts groundwater from three wells in the Tapo Canyon area. Groundwater is also extracted from several dewatering wells at the west end of the city which is discharged to the Arroyo Simi. The Tapo Canyon Water Treatment Plant, a one-million gallon per day (MGD) facility, utilizes the three Tapo Canyon wells to provide water to approximately 500 homes. Golden State Water Company (GSWC) in Simi Valley extracts groundwater from one well and blends it with imported water from Calleguas (10% groundwater, 90% imported water)¹³. VCWWD8 serves 68% of demand or approximately 23,000 AF of water while GSWC serves the remaining 32%, approximately 8,500 AF¹⁴. In 2021 Calleguas delivered 19,872 AF to VCWWD8 and 5,272 AF to GSWC.

The City of Moorpark residents receive water from Ventura County Water Works District No. 1 (VCWWD1). Approximately 75-80% of VCWWD1's water is imported from Calleguas. In 2021, Calleguas delivered 7,618 AF to VCWWD1. The City also extracts groundwater from two wells used for park irrigation.

The City of Thousand Oaks extracts groundwater using it for median irrigation on Hillcrest Ave. and golf course irrigation at the Los Robles Golf Course. California Water Service and California American Water along with the City of Thousand Oaks Water Department provide water imported from Calleguas in the Thousand Oaks, Newbury Park and Westlake Village area. According to the *City of Thousand Oaks 2015 Urban Water Management Plan*, the City supplies water to approximately 36% of water users, California American Water 48%, and California Water Service Company 16%. In 2021, these three water purveyors received 32,709 AF of water from Calleguas.

The City of Camarillo relies on groundwater and imported water from Calleguas. The city extracts groundwater from four wells, supplying approximately 40-50% of the city's water demand with the remaining demand supplied by imported water. The city must keep its groundwater extraction volume below the groundwater extraction allocation from the FCGMA. In 2021, Calleguas delivered 5,971 AF of water to the City of Camarillo. Water for some residents is supplied by Pleasant Valley Mutual (groundwater and imported water), Crestview Mutual (groundwater and imported water), California American Water Co. (imported water), and Camrosa Water District (groundwater and imported water).

The Port Hueneme Water Agency receives and treats water from UWCD and blends it with water from Calleguas for the City of Port Hueneme, Channel Islands Beach Services Community District and Naval Base Ventura County.

¹³ Golden State Water Company, 2015 Urban Water Management Plan – Simi Valley.

¹⁴ Ventura County Waterworks District No. 8, City of Simi Valley, 2015 Urban Water Management Plan.

In the Ojai Valley, the City of Ojai and the communities of Casitas Springs, Meiners Oaks and Oak View rely on a mixture of groundwater extracted by local purveyors, and wholesale water from Lake Casitas delivered by Casitas Municipal Water District to local water purveyors.

In the Santa Clara River Valley area, the City of Santa Paula relies on local groundwater (approximately 5,000 to 7,000 AF/yr based on reporting to UWCD). In addition, some surface water is diverted from Santa Paula Creek (approximately 500 AF/yr)¹⁵ and is sent to Canyon Irrigation Company in exchange for extraction credits for the Santa Paula Basin. The City of Fillmore relies solely on groundwater extracted from City water wells (approximately 2,600 to 2,800 AF/yr based on reporting to UWCD). The community of Piru relies on groundwater delivered by local water purveyors.

Residents of the Lockwood Valley area and the Santa Monica Mountains area, as well as residents living in areas not served by a water company rely on private domestic water wells. Water is extracted from groundwater basins, or from water-bearing units (fractured volcanic rock and bedrock) in areas outside of groundwater basins.

¹⁵ Data from City of Santa Paula 2015 Urban Water Management Plan

8.0 Sustainable Groundwater Management Act (SGMA)

On January 1, 2015, the Sustainable Groundwater Management Act (SGMA) became effective. SGMA is a comprehensive three-bill package that establishes a new structure for local authorities to sustainably manage their groundwater basins. Sustainable management under the act is defined as the management and use of groundwater in a manner that can be maintained without causing "significant and unreasonable" impacts to one or more of the following indicators: (1) lowering of groundwater levels, (2) reduction of groundwater storage, (3) seawater intrusion, (4) water quality degradation, (5) land subsidence, and (6) impacts on beneficial uses of interconnected surface water.

SGMA requires the formation of local groundwater sustainability agencies (GSAs) in all DWR Bulletin No. 118 basins designated as high or medium priority and critically-overdrafted. GSAs can form in low-priority basins, but the law does not require it. GSAs must assess conditions in their respective water basins and adopt a groundwater sustainability plan (GSP) that ensures the basin will be sustainably managed within 20 years, with interim milestones subject to state review every five years. Critically overdrafted basins must submit a GSP by January 31, 2020; other high and medium priority basins must be managed under a GSP by January 31, 2022.

Critically Overdrafted Basins

SGMA states a basin is subject to critical overdraft "when continuation of present water management practices would probably result in significant adverse overdraft-related environmental, social, or economic impacts." Undesirable impacts result from conditions of critical overdraft which include seawater intrusion, land subsidence, groundwater depletion, and/or lowering of groundwater levels. SGMA directed the DWR to identify critically overdrafted groundwater basins and subbasins. DWR identified a statewide base period from 1989 to 2009 for evaluation that included wet and dry periods. A basin is placed in critical overdraft when the basin has one or more undesirable impacts. DWR compiled a list of 21 critically overdrafted basins and subbasins in January 2016. Three are in Ventura County (**Figure 8-1**). Those basins are the Cuyama Valley Basin (Bulletin 118 No. 3-013), the Pleasant Valley Basin (Bulletin 118 No. 4-006), and the Oxnard Subbasin (Bulletin 118 No. 4-004.02).

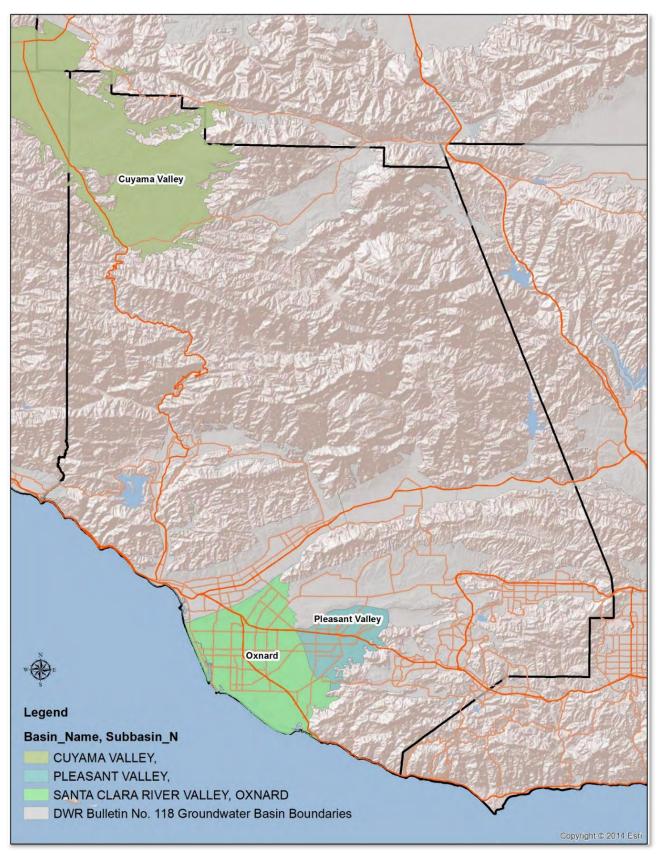


Figure 8-1: Critically overdrafted basins in Ventura County.

High & Medium Priority Basins in Ventura County

DWR's Basin Prioritization is a technical process that utilizes the best available data and information to classify California's 515 groundwater basins into one of four categories: high-, medium-, low-, or very-low priority. Each basin's priority determines which provisions of California Statewide Groundwater Elevation Monitoring (CASGEM) and SGMA apply. SGMA requires medium- and high-priority basins to develop GSAs, develop GSPs and manage groundwater for long-term sustainability.

As of May 2014, 127 of the 517 basins were ranked as medium and high priority basins. Those 127 medium and high priority basins account for 96% of California's annual groundwater extraction. Ventura County has a total of four high priority and seven medium priority basins (**Figure 8-2**).

New priority rankings were completed by DWR in late 2019.

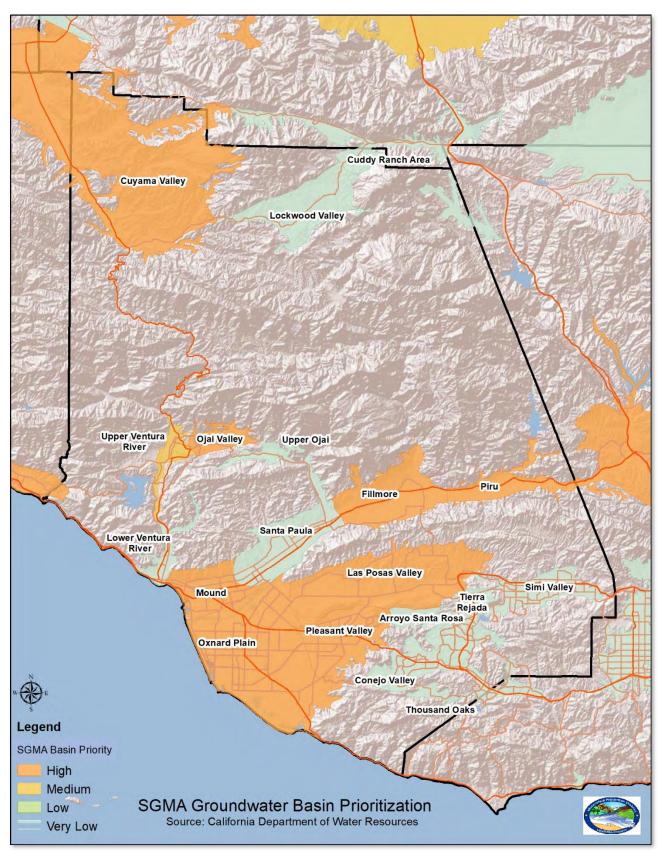


Figure 8-2: 2019 Final SGMA B118 basin prioritization.

Adjudicated Basins

Santa Paula Basin

The Santa Paula Basin (Bulletin 118 Basin No. 4-004.04) is currently the only adjudicated basin in Ventura County. Adjudicated basins do not need a GSA but must still provide groundwater measurements to DWR.

Santa Paula Basin's groundwater rights were adjudicated in 1996 in a stipulated judgement to establish pumping allocations and a management plan for the basin. The judgment awarded 27,500 acre-feet of groundwater rights to the SPBPA to be held in trust for the benefit of its members. Each member is entitled to an "Individual Party Allocation" (IPA) that establishes a maximum quantity of water that can be extracted from the basin. The judgment also includes cut back provisions that can be implemented as necessary to balance total production within the basin's safe yield.

A Watermaster is usually appointed by the court to ensure the basin is managed in accordance with the court's decree. A Technical Advisory Committee (TAC) acts as the Watermaster for the Santa Paula Basin with equal representation from UWCD, the SPBPA and the City of San Buenaventura. The TAC also determines the safe yield of the basin, along with the development and implementation of a basin management plan. Annual reports of the monitoring program are submitted to the TAC for review and approval. The primary groundwater management objective in the Santa Paula Basin is to ensure that production does not exceed the long-term sustainable yield of quality groundwater for current and future uses.

Groundwater Sustainability Agencies (GSAs)

GSAs are responsible for developing and implementing a GSP to ensure the basin meets its sustainability goal by operating within its sustainable yield without creating undesirable results. Before DWR will accept and review submitted GSPs, a basin must be managed under a GSA or multiple GSAs. GSAs for all medium- and high-priority basins in Ventura County have been formed and there are no "unmanaged areas.¹⁶" Below are all GSA's in Ventura County.

Arroyo Santa Rosa Basin GSA

The County of Ventura and the Camrosa Water District (Camrosa) entered into a Joint Exercise of Powers Agreement (JPA) to manage the portion of the Arroyo Santa Rosa Basin (Bulletin 118 Basin No. 4-07) outside of the FCGMA boundary. The JPA was approved by the Ventura County Board of Supervisors on October 4, 2016, officially forming the Arroyo Santa Rosa Basin GSA. The western area of the Arroyo Santa Rosa Basin is managed by the FCGMA and the eastern portion by the Arroyo Santa Rosa Basin GSA.

Camrosa Las Posas Basin GSA

The majority of the Las Posas Basin fall under the jurisdiction of the FCGMA. However, a 4.5-mile section along the southern border is outside of the FCGMA boundaries. The section outside of the boundary will be managed by Camrosa. Camrosa delivers potable and non-potable water to residential and agricultural customers in that area and filed to act as the GSA for that portion of the basin on June 28, 2017.

Camrosa OPV Management Area GSA

Camrosa also filed to act as the GSA for the portions of the Oxnard Subbasin and Pleasant Valley Basin outside of the FCGMA boundary on June 28, 2017. Camrosa will be the GSA for areas that lie within their service area but are outside of the FCGMA boundaries. The Subbasin and Basin were identified as high priority in 2014 through the CASGEM prioritization process.

Cuyama Basin GSA (CBGSA)

The Cuyama Basin underlies portions of three counties, Santa Barbara County, Kern County and Ventura County. On June 12, 2017, the CBGSA posted notice to act as the GSA for the entire basin. The CBGSA is a joint powers authority comprised of six local agencies: the Cuyama Basin Water District, Cuyama Community Services District, Santa Barbara County Water Agency, San Luis Obispo County, Ventura County and Kern County. These six agencies collectively carry water management, water supply, and land use responsibilities across the entire basin.

Fillmore and Piru Basins GSA

The Fillmore and Piru Subbasins lie along the Santa Clara River in the eastern portion of Ventura County. On June 28, 2017, the Fillmore and Piru Basins GSA posted notice to act as the GSA for both basins. The Fillmore and Piru Basins GSA is a joint powers authority comprised of UWCD, Ventura County and the City of Fillmore. UWCD is authorized to conduct water resource investigations, acquire water rights, build water storage and recharge facilities, construct wells and pipelines for water deliveries, commence actions involving water rights and water use, and prevent interference with or diminution of stream/river flows. The County exercises water management and land use authority throughout the county, including the Fillmore and Piru Basins. The City of Fillmore is a local municipality that exercises water supply, water management and land use authority within the city's boundaries.

Mound Basin GSA (MBGSA)

The MBGSA posted notice with the DWR on June 29, 2017, to be the GSA for the Mound Subbasin (DWR Basin No. 4-004.03). MBGSA is a joint powers authority comprised of three local public agencies: the City

¹⁶ Unmanaged areas are areas in high or medium priority basins in which a local agency has not filed to become a GSA and are not within the service area of another GSA.

of Ventura, Ventura County, and UWCD. The City of Ventura exercises water supply, water management and land use authority within its boundaries. The County exercises water management and land use authority in land overlying the Mound Subbasin. UWCD is authorized to replenish groundwater of the basin and does not extract groundwater.

Fox Canyon Groundwater Management Agency

On February 11, 2015, the FCGMA notified the DWR of their intent to become the exclusive GSA for the Arroyo Santa Rosa Basin, Oxnard Subbasin, Pleasant Valley Basin and the Las Posas Valley Basin. The FCGMA's authority is limited to areas within the portions of the Arroyo Santa Rosa, Oxnard Subbasin, Pleasant Valley and Las Posas Valley Basins that lie within its boundary. The FCGMA is the exclusive GSA for those basins within the agency's statutory boundaries.

Ojai Basin Groundwater Management Agency (OBGMA)

The OBGMA filed a notice of intent to become the exclusive GSA for the Ojai Valley Groundwater Basin on December 6, 2014. The OBGMA submitted an analysis of their basin conditions on December 22, 2016, in lieu of preparing a GSP plan. The basin analysis is under review by the DWR and must demonstrate the basin has operated within its sustainable yield over a 10-year period.

Upper Ventura River Groundwater Agency (UVRGA)

The UVRGA filed a notice of intent to become the GSA for the Ventura River Valley Upper Basin, Ventura River Subbasin on April 21, 2017. The UVRGA is a joint powers authority comprised of five local public agencies: (1) Casitas Municipal Water District, (2) the City of Ventura, (3) Ventura County, (4) Meiners Oaks Water District, and (5) the Ventura River Water District. Prior to GSA formation, the Upper Ventura River Basin boundary was modified, reducing the area.

The County of Ventura

On June 28, 2017, the County notified DWR of their intent to become the GSA for all areas in basins outside of the management of a GSA. The notice was filed to prevent a basin from being designated as a "probationary basin" if unmanaged areas existed after June 30, 2017. There are no unmanaged areas of a basin within the County.

References

American Geological Institute, Alexandria Virginia, Robert L. Bates & Julia A. Jackson, 1987, Glossary of Geology

Calleguas Municipal Water District, Las Posas Basin Aquifer Storage and Recovery Project, http://www.calleguas.com/projects/lpbroc.pdf, 2007

California Department of Water Resources, August 1978, Water Well Standards Ventura County Bulletin No. 74-9

California Department of Water Resources, October 2003, California's Groundwater, Bulletin 118

California Department of Water Resources, December 2016, California's Groundwater, Bulletin 118, Interim Update 2016.

California Regional Water Quality Control Board, Los Angeles Region, June 1994, Water Quality Control Plan, Los Angeles Region

California State Water Resources Board (CSWRB). 1956. Ventura County Investigation. Bulletin 12. Two Volumes.

Camrosa Water District, August 2013, Santa Rosa Basin Groundwater Management Plan, Prepared by MWH, Arcadia, CA 91007

Camrosa Water District, Santa Rosa Mutual Water Company, Property Owners, April 1997, Santa Rosa Basin Management Plan, For areas within the Arroyo Santa Rosa Portion of the Santa Rosa Groundwater Basin not within the boundaries of the Fox Canyon Groundwater Management Agency

City of Thousand Oaks 2010 Urban Water Management Plan, Ventura County, California, June 2011, RBF Consulting County of Ventura Public Works Agency, Flood Control and Water Resources, December 1986, Quadrennial Report of Hydrologic Data 1981-84

County of Ventura Board of Supervisors, December 16, 2014, County of Ventura Ordinance 4468, An ordinance of the County of Ventura repealing and reenacting Ventura County Ordinance Code Section 4811 et seq. relating to groundwater conservation.

County of Ventura Public Works Agency, Flood Control District, June 1971, Hydrologic Analysis Zone 4 1971

County of Ventura Public Works Agency, Flood Control and Water Resources Department, April 1978, North Half Area Hydrologic Balance Study

County of Ventura, Public Works Agency, Watershed Protection District, 2013 Water Supply and Demand, January 2015

Fetter, C.W., 1988, Applied Hydrogeology, Second Edition

Fox Canyon Groundwater Management Agency, May 2007, 2007, Update to the Fox Canyon Groundwater Management Agency Groundwater Management Plan

Fox Canyon Groundwater Management Agency, 2013, Calendar Year 2012 Annual Report Ventura County Watershed Protection District, Water & Environmental Resources Division, Groundwater Section, January 2007, Groundwater Quality Report 2005-2006

State Water Resources Control Board, Title 22 California Code of Regulations Related to Drinking Water, June 2016

Ventura County Department of Public Works, Flood Control District, Las Posas Area Groundwater Quality and Quantity Investigation, August 1971

Ventura County Watershed Protection District, Water & Environmental Resources Division, Groundwater Section, Hydrologic and Geologic Data, (Field and other data in Groundwater Section files).

United Water Conservation District, Santa Paula Basin 2005 Annual Report, Ventura County, California. November 2007.

United Water Conservation District, Hydrogeologic Assessment of the Mound Basin, Open File Report 2012-01, May 2012

Appendices Appendix A – Glossary of Groundwater Terms

<u>Aquifer</u>: A geologic formation or structure that yields water in sufficient quantities to supply pumping wells or springs.

Abandoned Well: Means any of the following:

- (1) A water well used less than 8 hours in any twelve-month period. Failure to submit reports of well usage will result in a well being classified as abandoned.
- (2) A monitoring well from which no monitoring data has been taken for a period of two years.
- (3) A well which is in such a state of disrepair that it cannot be made functional for its original use or any other use.
- (4) An open engineering test hole after 24 hours has elapsed after construction and testing work has been completed on the site.
- (5) A cathodic protection well which is no longer used for its intended purpose.

<u>Confined Aquifer:</u> An aquifer separated from the surface by an aquiclude or an aquitard to the extent that pressure can be created in the lower reaches of the aquifer.

<u>Contamination</u>: Alteration of waters by waste, salt-water intrusion or other materials to a degree which creates a hazard to the public health through actual or potential poisoning or through actual or potential spreading of disease.

Department of Water Resources: (DWR) operates and maintains the State Water Project, including the California Aqueduct. The department also provides dam safety and flood control services, assists local water districts in water management and conservation activities, promotes recreational opportunities, and plans for future statewide water needs.

Fox Canyon Groundwater Management Agency (FCGMA): The Agency created when the California State Legislature enacted and passed State Assembly Bill No. 2995 on Sept. 13, 1982, creating the *Fox Canyon Groundwater Management Agency (GMA)*. This law, also referred to as AB2995, granted jurisdiction over all lands overlying the Fox Canyon aquifer zone to control seawater intrusion, protect water quality, and manage water resources.

<u>Groundwater:</u> Water beneath the surface of the earth within the zone below the water table in which the soil is completely saturated with water.

<u>Groundwater Basin</u>: A geologically and hydrologically defined area containing one or more aquifers, which store and transmit water yielding significant quantities of water to extraction facilities.

Lower Aquifer System (LAS): The area underlying the Oxnard Pressure Basin, which contains the Hueneme aquifer, the Fox Canyon Aquifer and the Grimes Canyon aquifer. The LAS is recharged from the Fox Canyon and Grimes Canyon Outcrops, the areas where the aquifers come to the surface exposing the permeable sands and gravels to recharge from rainfall and surface runoff.

<u>Overdraft</u>: The condition of a groundwater basin or aquifer where the average annual amount of water extracted exceeds the average annual supply of water to a basin or aquifer.

<u>Perched or Semi-Perched Aquifer:</u> The water-bearing area that is located between the earth's surface and clay deposits that exist above an Aquifer.

<u>Receiving Waters:</u> All waters that are "Waters of the State" within the scope of the State Water Code, including but not limited to, natural streams, creeks, rivers, reservoirs, lakes, ponds, water in vernal pools, lagoons, estuaries, bays, the Pacific Ocean, and ground water.

Seawater Intrusion: The overdrafting of aquifers, which results in, the depletion of water supplies, lowering of water levels and degradation from seawater intrusion. Seawater intrusion results from the reversal of hydrostatic pressure allowing water flow to be onshore rather than offshore.

Total Dissolved Solids: (TDS) is a term that represents the amount of all of our natural minerals that is dissolved in water.

Total Maximum Daily Load (TMDL) is a number that represents the assimilative capacity of a receiving water to absorb a pollutant. The TMDL is the sum of the individual waste-load allocations for point sources, load allocations for nonpoint sources plus an allotment for natural background loading, and a margin of safety. TMDL's can be expressed in terms of mass per time (the traditional approach) or in other ways such as toxicity or a percentage reduction or other appropriate measure relating to a state water quality objective. A TMDL is implemented by reallocating the total allowable pollution among the different pollutant sources (through the permitting process or other regulatory means) to ensure that the water quality objectives are achieved.

<u>United Water Conservation District (UWCD)</u>: The District administers a "basin management" program for the Santa Clara Valley and Oxnard Plain, utilizing the surface flow of the Santa Clara River and its tributaries for replenishment of groundwater. Originally established as the Santa Clara River Water Conservation District in 1927.

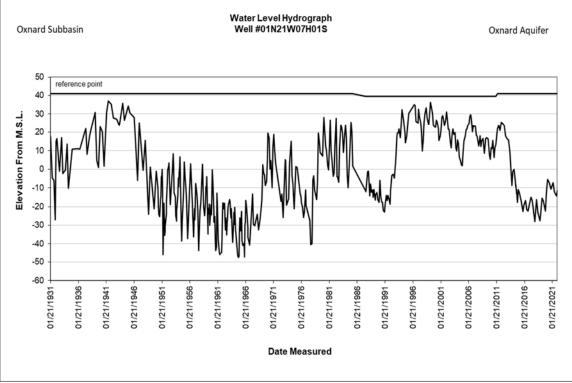
<u>Upper Aquifer System (UAS)</u>: The area underlying the Oxnard Pressure Basin, which contains the perched and semi-perched zones, the Oxnard aquifer zone, and the Mugu aquifer. The UAS is recharged via the twenty-three square mile unconfined Oxnard Forebay Basin near El Rio.

<u>Water Quality Standards</u>: Defined as the beneficial uses (e.g., swimming, fishing, municipal drinking water supply, etc.) of water and the water quality objectives adopted by the State or the United States Environmental Protection Agency to protect those uses.

<u>Water Well Ordinance No. 4468:</u> The Ventura County Groundwater Conservation Ordinance which was originally adopted by the Board of Supervisors in October 1970 and revised in 1979, 1984, 1985, 1987, 1991, 1999 and most recently in December 2014. The purpose of the ordinance is to ensure that all new or modified water, cathodic protection and monitoring wells are drilled by licensed water well contractors and are properly sealed so that they cannot serve as conduits for the movement of poor quality or polluted waters into useable aquifers or be hazardous to people or animals.

<u>Well Destruction</u>: To fill a well (including both interior and annular spaces if the well is cased) completely in such a manner that it will not produce water or act as a conduit for the transmission of water between any water-bearing formations penetrated.

Well Owner: The owner of the land on which a well is located.


Appendix B – Key Water Level Hydrographs

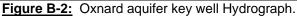

FIGURES

Figure B-1: Map of Key Water Level Wells in Ventura County	118
Figure B-2: Oxnard aquifer key well hydrograph	
Figure B-3: Oxnard aquifer 10 year level change	119
Figure B-4: Forebay area key well hydrograph	
Figure B-5: Forebay area 10 year level change	120
Figure B-6: Fox Canyon Aquifer Key Well Hydrograph	121
Figure B-7: Fox Canyon Aquifer Level Change	121
Figure B-8: Pleasant Valley Key Well Hydrograph	122
Figure B-9: Pleasant Valley Level Change	122
Figure B-10: West Las Posas Key Well Hydrograph	123
Figure B-11: West Las Posas Basin Level Change	123
Figure B-12: East Las Posas Key Well Hydrograph	124
Figure B-13: East Las Posas Basin Level Change	124
Figure B-14: Santa Rosa Valley Key Well Hydrograph	125
Figure B-15: Santa Rosa Valley Level Change	125
Figure B-16: Simi Basin Key Well Hydrograph	126
Figure B-17: Simi Basin Level Change	126
Figure B-18: Ventura River Basin Key Well Hydrograph	127
Figure B-19: Ventura River Basin Level Change	127
Figure B-20: Ojai Valley Basin Key Well Hydrograph	128
Figure B-21: Ojai Valley Basin Level Change	128
Figure B-22: Mound Basin Key Well Hydrograph	129
Figure B-23: Mound Basin Level Change	129
Figure B-24: Santa Paula Basin Key Well Hydrograph	130
Figure B-25: Santa Paula Basin Level Change	130
Figure B-26: Fillmore Basin Key Well Hydrograph	131
Figure B-27: Fillmore Basin Level Change	131
Figure B-28: Piru Basin Key Well Hydrograph	132
Figure B-29: Piru Basin Level Change	132
Figure B-30: Lockwood Valley Basin Key Well Hydrograph	133
Figure B-31: Lockwood Valley Basin Level Change	133
Figure B-32: Cuyama Valley Basin Key Well Hydrograph	134
Figure B-33: Cuyama Valley Basin Level Change	134

Figure B-1: Map showing key water level wells in Ventura County.

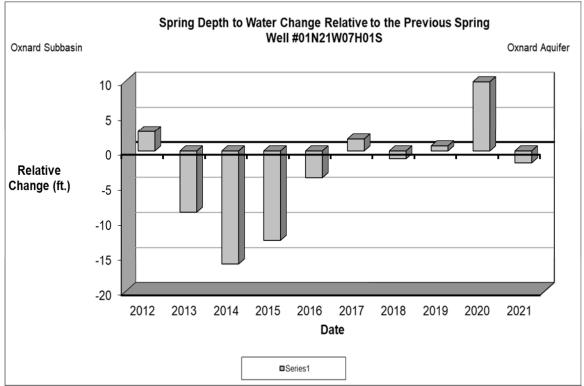
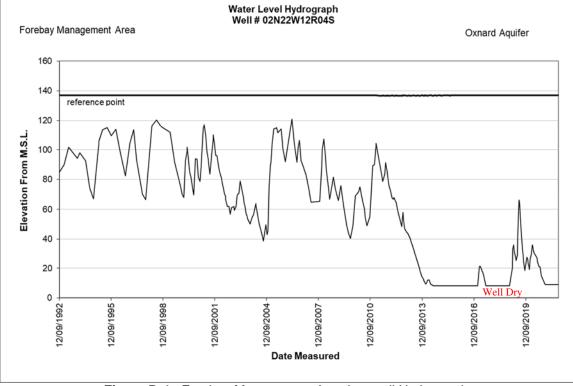



Figure B-3: Oxnard aquifer 10 year spring level change depicted on Up/Down graph.

Figure B-4: Forebay Management Area key well Hydrograph.

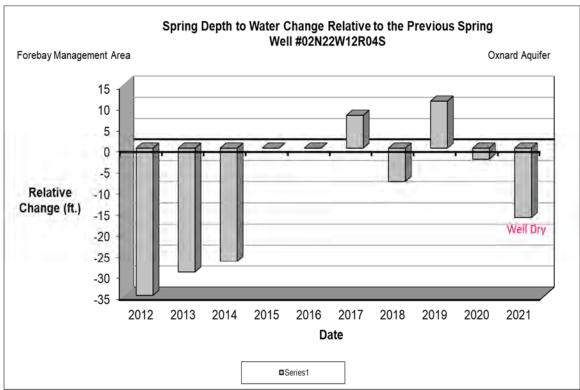
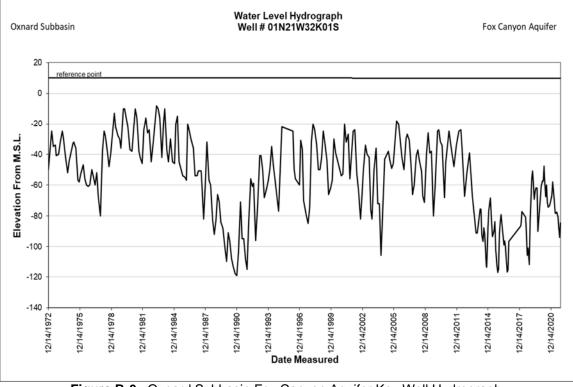



Figure B-5: Forebay Management Area 10 year spring level change depicted on Up/Down graph.

Figure B-6: Oxnard Subbasin Fox Canyon Aquifer Key Well Hydrograph.

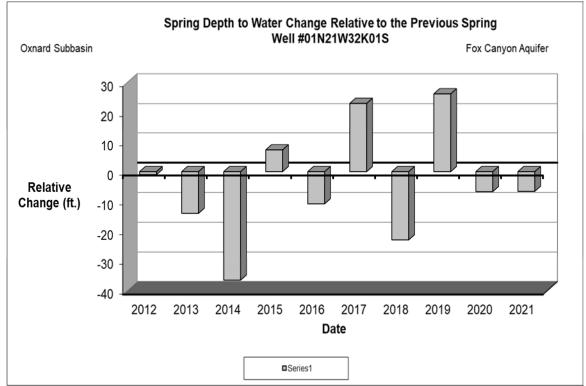
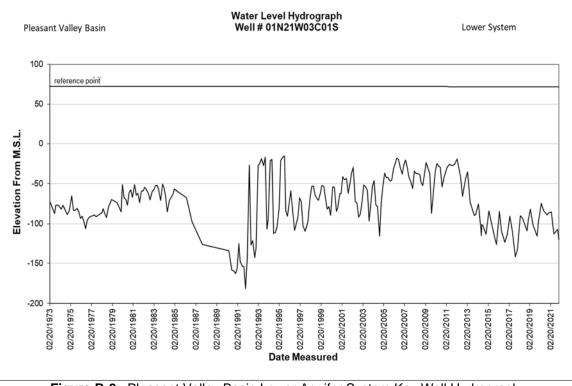
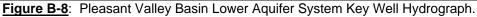




Figure B-7: Oxnard Subbasin Fox Canyon Aquifer 10 year spring level change depicted on Up/Down graph.

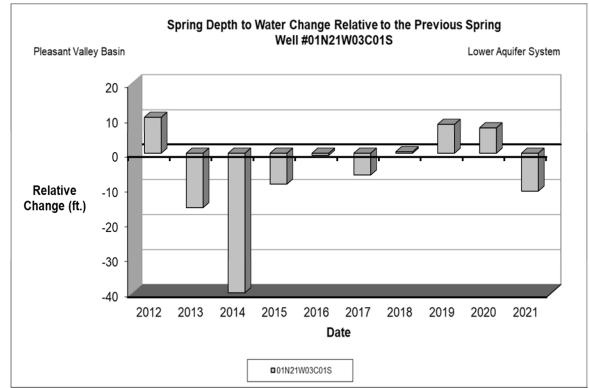


Figure B-9: Pleasant Valley Basin Lower Aquifer System 10 year spring level change depicted on Up/Down graph.

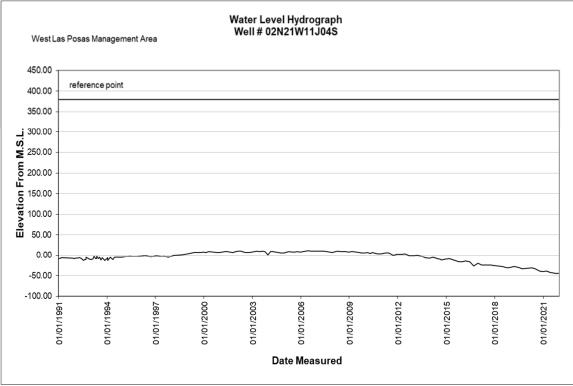


Figure B-10: West Las Posas Management Area Key Well Hydrograph.

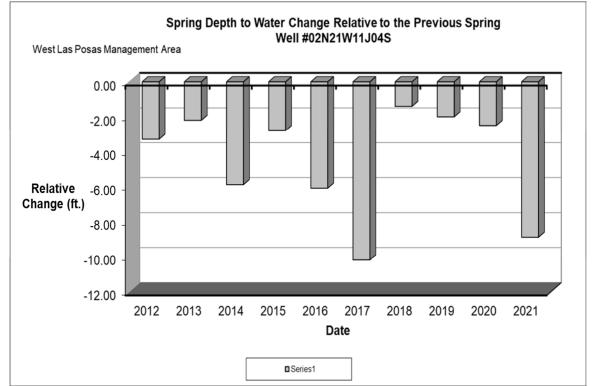


Figure B-11: West Las Posas Management Area 10 year spring level change depicted on Up/Down graph.

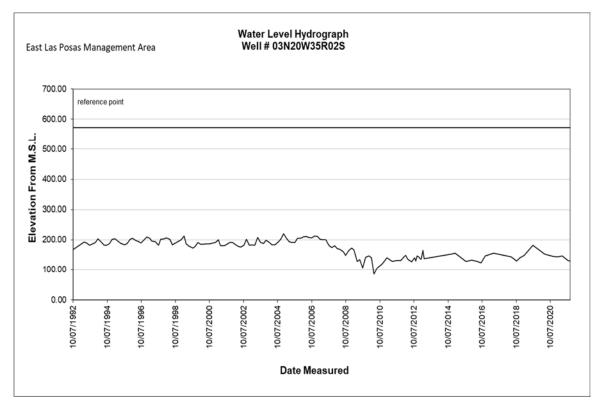


Figure B-12: East Las Posas Management Area Key Well Hydrograph.

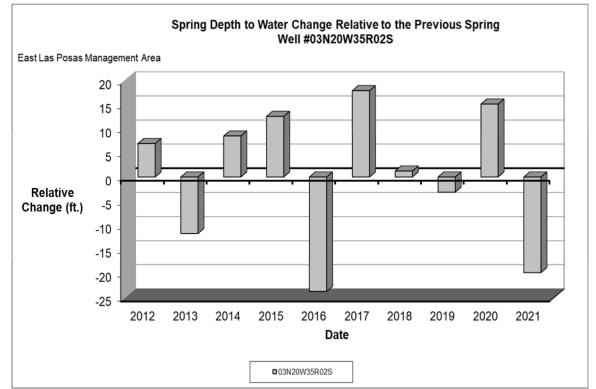


Figure B-13: East Las Posas Management Area 10 year spring level change depicted on Up/Down graph.

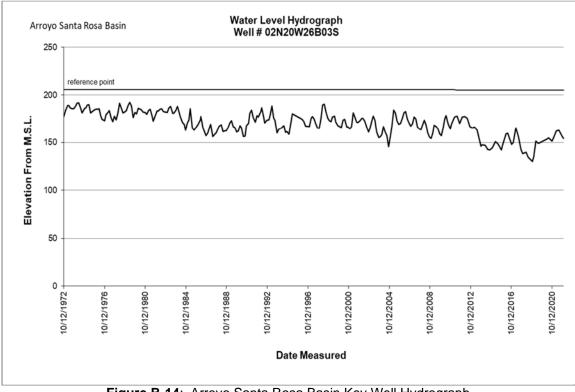
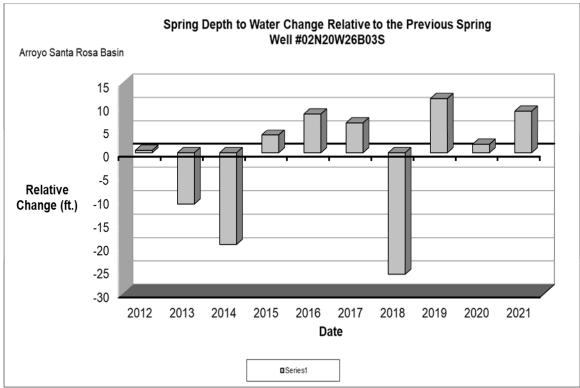
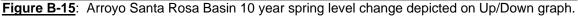




Figure B-14: Arroyo Santa Rosa Basin Key Well Hydrograph.

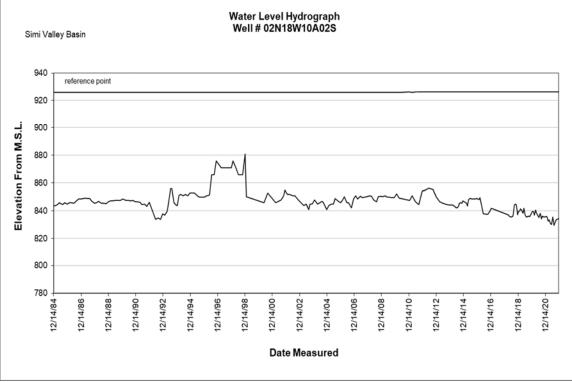
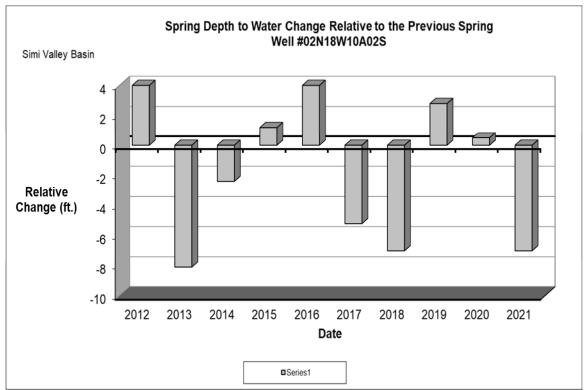



Figure B-16: Simi Valley Basin Key Well Hydrograph.

Figure B-17: Simi Valley Basin 10 year spring level change depicted on Up/Down graph.

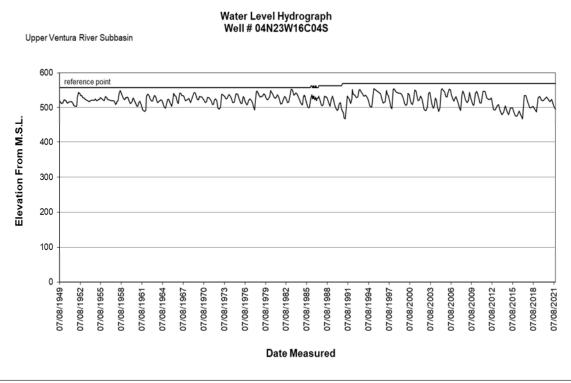


Figure B-18: Upper Ventura River Subbasin Key Well Hydrograph.

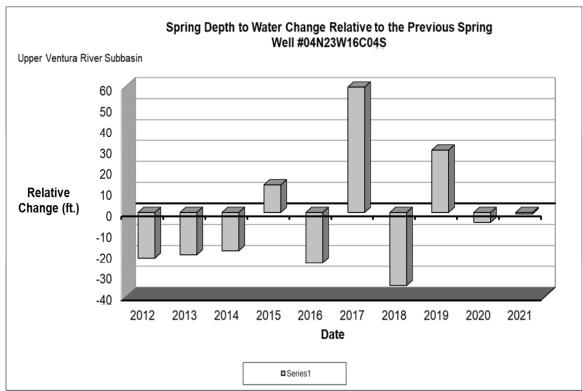


Figure B-19: Upper Ventura River Subbasin 10 year spring level change depicted on Up/Down graph.

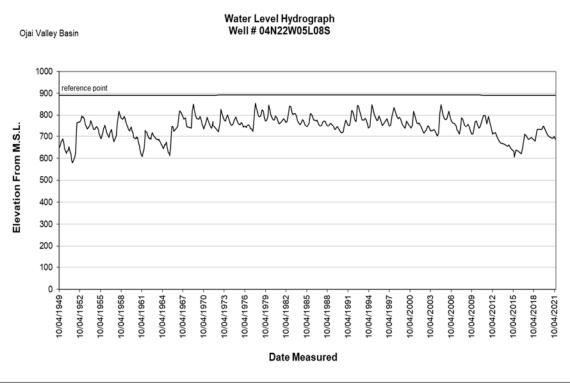
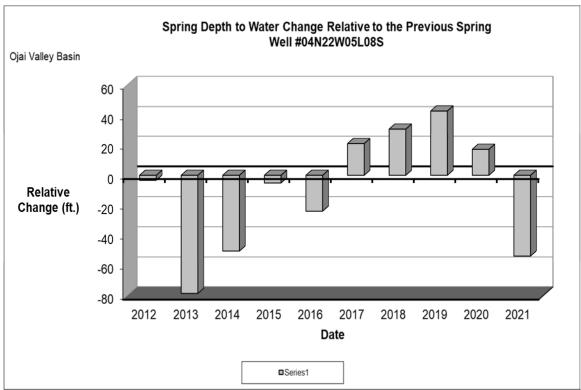



Figure B-20: Ojai Valley Basin Key Well Hydrograph.

Figure B-21: Ojai Valley Basin 10 year spring level change depicted on Up/Down graph.

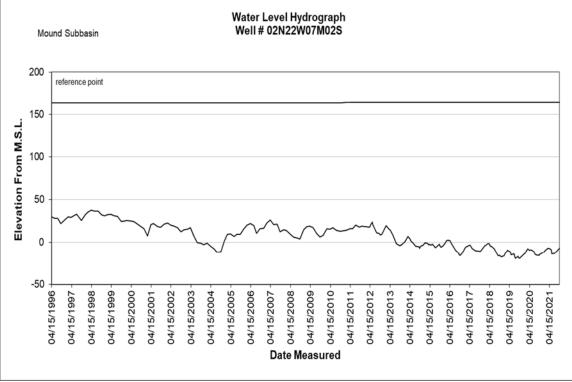


Figure B-22: Mound Subbasin Key Well Hydrograph.

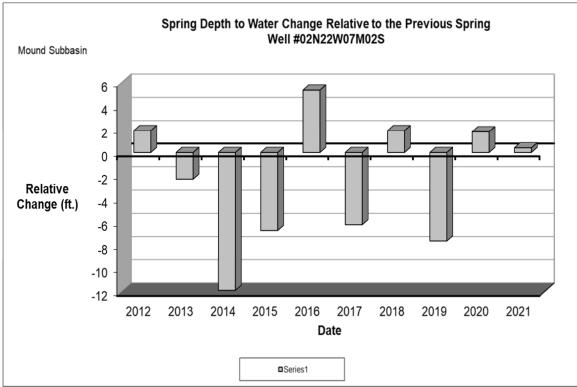


Figure B-23: Mound Subbasin 10 year spring level change depicted on Up/Down graph.

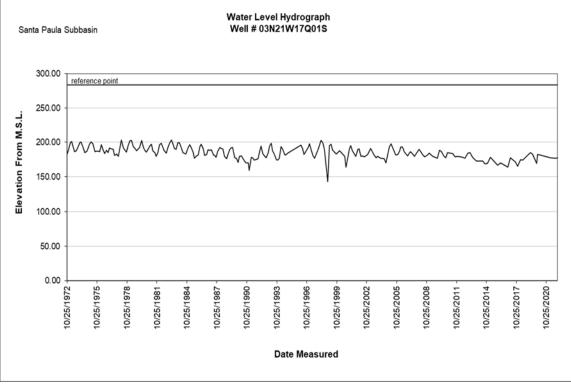


Figure B-24: Santa Paula Subbasin Key Well Hydrograph.

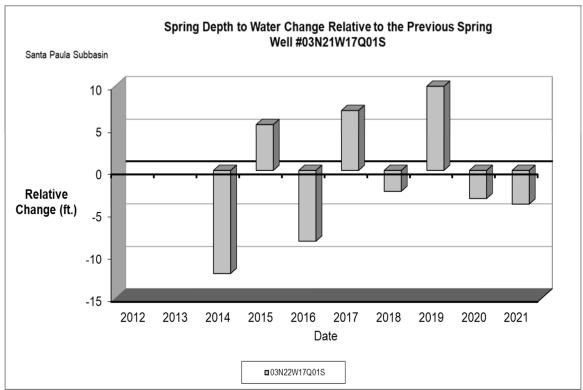


Figure B-25: Santa Paula Subbasin 10 year spring level change depicted on Up/Down graph.

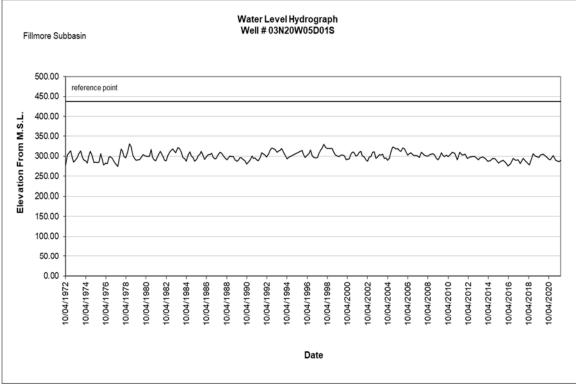
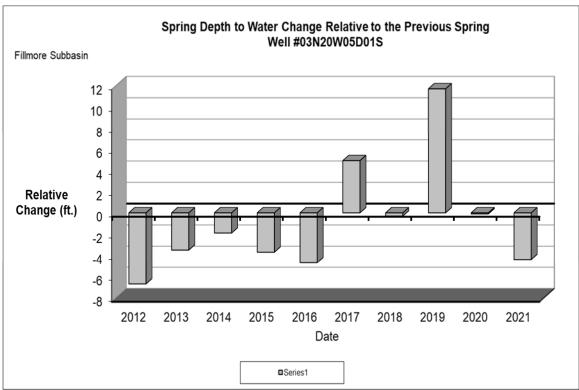



Figure B-26: Fillmore Subbasin Key Well Hydrograph.

Figure B-27: Fillmore Subbasin 10 year spring level change depicted on Up/Down graph.

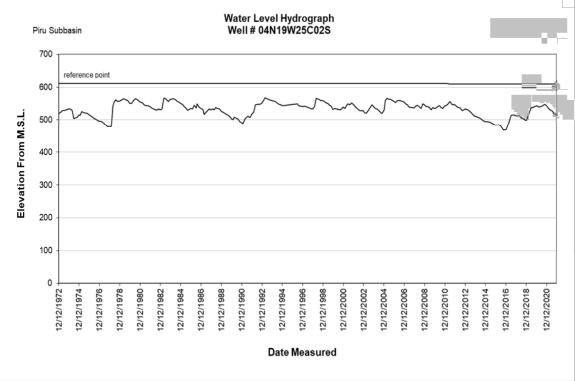
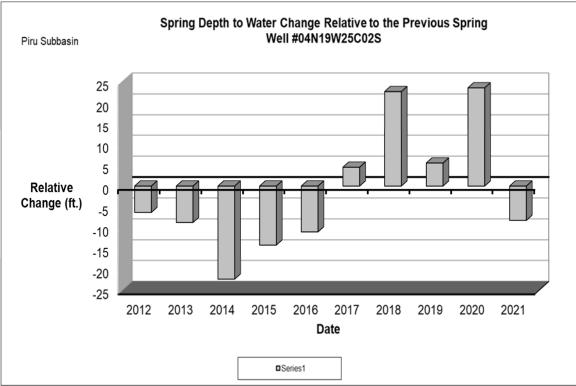
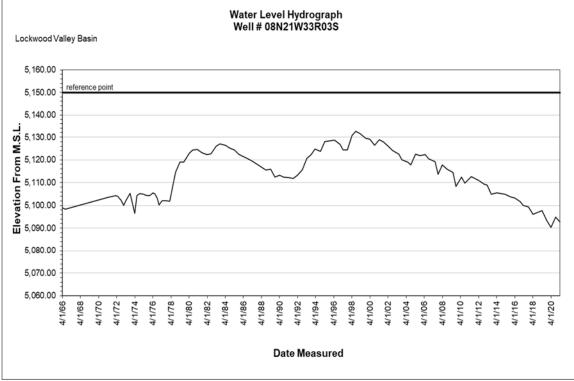




Figure B-28: Piru Subbasin Key Well Hydrograph.

Figure B-29: Piru Subbasin 10 year spring level change depicted on Up/Down graph.

Appendix B - Key Water Level Wells

Figure B-30: Lockwood Valley Basin Key Well Hydrograph.

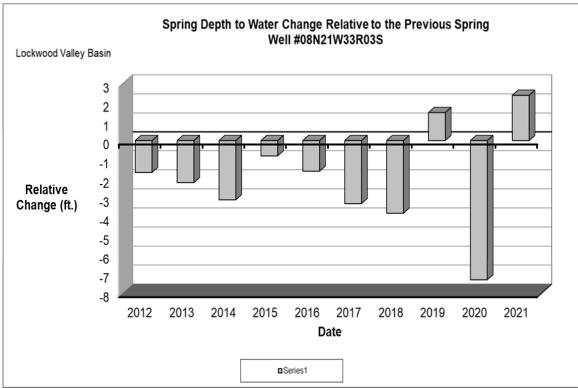
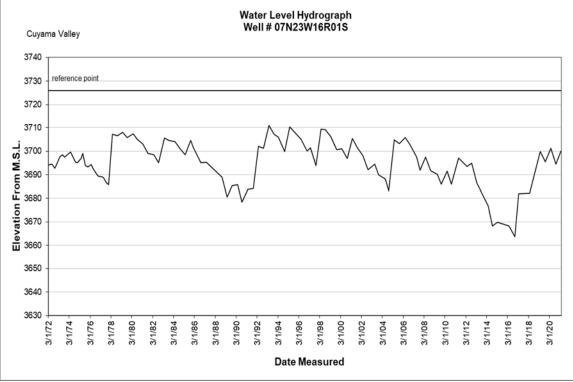
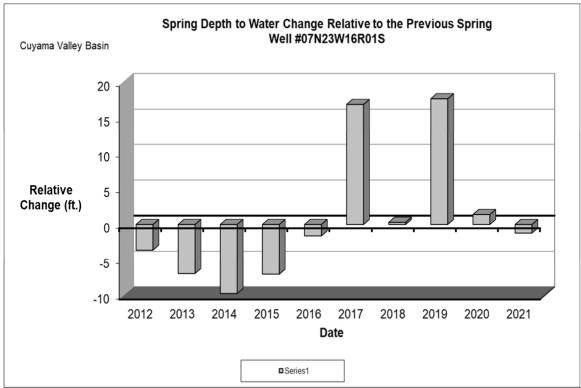




Figure B-31: Lockwood Valley Basin 10 year spring level change depicted on Up/Down graph.

Appendix B - Key Water Level Wells

Figure B-32: Cuyama Valley Basin Key Well Hydrograph.

Figure B-33: Cuyama Valley Basin 10 year spring level change depicted on Up/Down graph.

Appendix C -	Groundwater	Level	Measurement	Data
--------------	-------------	-------	-------------	------

<u> Appendix C</u> – Grou		weasureme				
GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/17/2021	307.66	106.02	201.64	
	02N19W20L01S	6/10/2021	307.66			Pumping
		10/13/2021	307.66	112.95	194.71	
		12/2/2021	307.66			Pumping
		3/17/2021	370.80	296.90	73.90	
	02N20W23G01S	6/10/2021	370.80	300.00	70.80	
	01.110.110.001.0	10/13/2021	370.80	299.50	71.30	
		12/2/2021	370.80	299.58	71.22	
		3/17/2021	274.11	201.48	72.63	
	02N20W23K01S	6/10/2021	274.11	213.90	60.21	
Arroyo Santa Rosa Valley	021120112011010	10/13/2021	274.11	211.70	62.41	
		12/2/2021	274.11	209.38	64.73	
		3/17/2021	235.21	78.74	156.47	
	02N20W23R01S	6/10/2021	235.21			Pumping
	02112010231013	10/13/2021	235.21			Pumping
		12/2/2021	235.21			Pumping
		3/17/2021	205.87	43.67	162.20	1 driping
		6/10/2021	205.87	42.75	163.12	
	02N20W26B03S	10/13/2021	205.87	49.83	156.04	
		12/2/2021	205.87	51.50	154.37	
		3/4/2021	635.46	12.40	623.06	
	01N19W07K16S	6/30/2021	635.46	8.90	626.56	
		10/5/2021	635.46	11.15	624.31	
		12/20/2021	635.46	10.00	625.46	
Conejo					720.10	
		3/4/2021	764.40	44.30	720.10	
	01N20W03J01S	6/30/2021	764.40	40.90	714.60	No Access
		10/5/2021	764.40	49.80	714.60	
		12/20/2021	764.40	50.20	714.20	
Cuddy Ranch Area	08N20W08B01S	4/30/2021	5,300.00	8.50	5,291.50	
		9/28/2021	5,300.00	12.60	5,287.40	
	07N23W16R01S*	4/1/2021	3,726.00	25.90	3,700.10	
		9/28/2021	3,726.00			Dry
	07N23W16R02S	4/1/2021	3,726.00	23.50	3,702.50	
		9/28/2021	3,726.00	34.50	3,691.50	
Cuyama Valley	07N24W13C03S	4/1/2021	3,435.00	23.70	3,411.30	
, ,		9/28/2021	3,435.00	34.10	3,400.90	
	09N23W30E05S	4/1/2021	3,544.50	193.60	3,350.90	
		9/28/2021	3,544.50	204.50	3,340.00	
	09N24W33J03S	4/1/2021	3,130.00	163.90	2,966.10	
		9/28/2021	3,130.00	163.80	2,966.20	
		3/18/2021	434.60	50.84	383.76	
	03N19W06D02S	6/14/2021	434.60			Pumping
	0011010000020	10/11/2021	434.60			No Access
Fillmore		12/3/2021	434.60	63.30	371.30	
		3/18/2021	404.58	30.22	374.36	
	03N20W01C04S	6/14/2021	404.58	33.80	370.78	
	0311201010048	10/11/2021	404.58	40.80	363.78	
		12/3/2021	404.58	42.57	362.01	

Appendix C	– Groundwater	Level	Measurement	Data
------------	---------------	-------	-------------	------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/18/2021	437.12	136.30	300.82	
		6/14/2021	437.12	147.75	289.37	
	03N20W05D01S*	10/11/2021	437.12	151.33	285.79	
		12/3/2021	437.12	147.05	290.07	
		3/18/2021	325.20			Pumping
		6/14/2021	325.20			Pumping
	03N20W09D01S	10/11/2021	325.20			Pumping
		12/3/2021	325.20			Pumping
		3/18/2021	397.11	44.70	352.41	
		6/14/2021	397.11	48.90	348.21	
	03N20W11C01S	10/11/2021	397.11	53.67	343.44	
		12/3/2021	397.11	54.85	342.26	
		3/18/2021	301.85	42.74	259.11	
		6/14/2021	301.85	47.33	254.52	
	03N21W01P02S	10/11/2021	301.85	48.85	253.00	
		12/3/2021	301.85	50.60	251.25	
		3/18/2021	434.43	45.20	389.23	
		6/14/2021	434.43			Pumping
	04N19W30D01S	10/11/2021	434.43			Pumping
		12/3/2021	434.43	61.27	373.16	
	04N19W31R01S	3/18/2021	448.85	50.12	398.73	
		6/14/2021	448.85	52.33	396.52	
		10/11/2021	448.85	59.08	389.77	
		12/3/2021	448.85	61.85	387.00	
Fillmore		3/18/2021	449.46	17.57	431.89	
		6/14/2021	449.46			Pumping
	04N19W32M02S	10/11/2021	449.46			Pumping
		12/3/2021	449.46	22.52	426.94	
		3/18/2021	477.43	3.67	473.76	
		6/14/2021	477.43	6.10	471.33	
	04N19W33D03S	10/11/2021	477.43	7.67	469.76	
		12/3/2021	477.43	9.10	468.33	
		3/18/2021	477.90	2.23	475.67	
	041401/220040	6/14/2021	477.90		470.07	Pumping
	04N19W33D04S	10/11/2021	477.90			Pumping
		12/3/2021	477.90			Pumping
		3/18/2021	513.88	126.60	387.28	· ····p····9
		6/14/2021	513.88			Pumping
	04N20W23Q02S	10/11/2021	513.88	140.70	373.18	i unping
		12/3/2021	513.88	138.88	375.00	
F		3/18/2021	505.35	125.81	379.54	
		6/14/2021	505.35	125.81	379.54	
	04N20W26C02S					
		10/11/2021	505.35	140.30	365.05	
		12/3/2021	505.35	142.62	362.73	No Cito Acceso
		3/18/2021	526.87			No Site Access
	04N20W33C03S	6/14/2021	526.87			No Site Access
		10/11/2021	526.87			No Site Access
		12/3/2021	526.87			No Site Access

Appendix C -	Groundwater Leve	el Measurement Data
--------------	------------------	---------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/4/2021	1,082.00			Pumping
	01N19W19L02S	6/30/2021	1,082.00			No Access
		10/5/2021	1,082.00	299.88	782.12	
		12/20/2021	1,082.00	299.88	782.12	
Hidden Valley		3/4/2021	999.98	46.10	953.88	
	01N19W30A01S	6/30/2021	999.98	47.30	952.68	
		10/5/2021	999.98	51.65	948.33	
		12/20/2021	999.98	50.10	949.88	
		3/9/2021	497.80			Full of Rocks
	0014014051/040*	6/15/2021	497.80			Full of Rocks
	02N19W05K01S*	10/18/2021	497.80			Full of Rocks
		12/8/2021	497.80			Full of Rocks
		3/22/2021	494.87	28.25	466.62	
	00014014/0011000	6/15/2021	494.87	28.25	466.62	
	02N19W08H02S	10/21/2021	494.87	26.90	467.97	
		12/8/2021	494.87	28.00	466.87	
		3/22/2021	485.50	335.59	149.91	
	02N20W03K03S	6/15/2021	485.50			Pumping
		10/18/2021	485.50	360.20	125.30	
		12/7/2021	485.50	354.80	130.70	
	02N20W10D02S	3/10/2021	459.53	314.25	145.28	
		6/15/2021	459.53	327.10	132.43	
		10/18/2021	459.53	328.30	131.23	
		12/7/2021	459.53	324.95	134.58	
		3/10/2021	415.47	166.85	248.62	
Las Posas Valley – East	0010014400040	6/15/2021	415.47			Pumping
Management Area	02N20W10G01S	10/18/2021	415.47			Pumping
		12/7/2021	415.47			Pumping
		3/10/2021	406.87	126.75	280.12	
	0010010401040	6/15/2021	406.87	128.65	278.22	
	02N20W10J01S	10/18/2021	406.87	133.50	273.37	
		12/7/2021	406.87	132.92	273.95	
		3/9/2021	1,026.90	860.70	166.20	
	021401/401046	6/15/2021	1,026.90	861.00	165.90	
	03N19W19J01S	10/18/2021	1,026.90	866.50	160.40	
		12/8/2021	1,026.90	866.10	160.80	
		3/9/2021	855.20	303.60	551.60	
	0211010/005060	6/15/2021	855.20			Meter Would Not Stabilize
	03N19W29F06S	10/18/2021	855.20	313.30	541.90	
		12/8/2021	855.20			Meter Would Not Stabilize
		3/9/2021	823.84	218.50	605.34	
	021/2014/051104.0	6/15/2021	823.84			Pumping
	03N20W25H01S	10/19/2021	823.84			Pumping
		12/8/2021	823.84			No Site Access

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
	0,111	3/9/2021	717.81	576.80	141.01	
		6/15/2021	717.81	585.40	132.41	
	03N20W26R03S*	10/20/2021	717.81	594.50	123.31	
		12/8/2021	717.81	591.40	126.41	
		3/10/2021	840.24	653.08	187.17	
	-	6/15/2021	840.25	656.10	184.15	
	03N20W27H01S	10/18/2021	840.25	659.30	180.95	
	-	12/7/2021	840.25	658.60	181.65	
		3/10/2021	840.25			Pumping
		6/15/2021	840.25			Pumping
	03N20W27H03S	10/27/2021	840.25	760.30	79.95	Pumping
		12/7/2021	840.25	0.00	840.25	Pumping
		3/10/2021	680.48	537.10	143.38	
Las Posas Valley – East		6/15/2021	680.48			Pumping
Management Area	03N20W34G01S	10/18/2021	680.48	554.50	125.98	
-		12/7/2021	680.48	553.50	126.98	
		3/10/2021	572.67	428.50	144.17	
		6/15/2021	572.67	426.60	146.07	
	03N20W35R02S	10/18/2021	572.67	441.20	131.47	
	-	12/8/2021	572.67	442.30	130.37	
	03N20W35R03S	3/10/2021	572.67	427.80	144.87	
		6/15/2021	572.67	436.40	136.27	
		10/18/2021	572.67	441.30	131.37	
		12/8/2021	572.67	442.40	130.27	
		3/10/2021	572.67	309.30	263.37	
	-	6/15/2021	572.67	309.80	262.87	
	03N20W35R04S	10/18/2021	572.67	310.20	262.47	
		12/8/2021	572.67	310.10	262.57	
		3/9/2021	569.00	715.40	-146.40	
		6/15/2021	569.00			No site access
	02N20W05D01S	10/18/2021	569.00			No site access
		12/8/2021	569.00			No site access
		3/10/2021	461.19			Meter Would Not Stabilize
		6/9/2021	461.19			Pumping
	02N20W06R01S	10/18/2021	461.19	663.10	-201.91	· • • • • • • • • • •
		12/7/2021	461.19			Pumping
		3/9/2021	395.00	561.09	-166.09	1 5
Las Posas Valley – West		6/14/2021	395.00			Pumping
Management Area	02N20W07R03S	10/18/2021	395.00	572.60	-177.60	· • • • • • • • •
-		12/7/2021	395.00			Pumping
		3/10/2021	375.60	533.69	-158.09	· • • • • • • • •
		6/16/2021	375.60	543.30	-167.70	
	02N20W18A01S	10/18/2021	375.60	544.60	-169.00	
		12/7/2021	375.60	547.04	-171.44	
		3/10/2021	334.21	386.93	-52.72	
		6/15/2021	334.21			Pumping
	02N21W08H03S	10/26/2021	334.21	416.40	-82.19	
		12/8/2021	334.21	417.68	-83.47	

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/20/2021	323.75	258.06	65.69	
	02N21W09D02S	10/22/2021	323.75	252.00	71.75	
		3/9/2021	381.01	430.82	-49.81	
		6/14/2021	381.01			Pumping
	02N21W10G03S	10/26/2021	381.01	440.10	-59.09	
		12/7/2021	381.01	438.63	-57.62	
	_	3/9/2021	379.39	451.60	-72.21	
		6/14/2021	379.39	458.40	-79.01	
	02N21W11J03S*	10/19/2021	379.39	459.70	-80.31	
		12/7/2021	379.39	457.10	-77.71	
		3/9/2021	379.39	419.10	-39.71	
	001041444 1040	6/14/2021	379.39	421.70	-42.31	
	02N21W11J04S	10/19/2021	379.39	424.60	-45.21	
		12/7/2021	379.39	424.50	-45.11	
		3/9/2021	379.39	220.90	158.49	
	001041444 1050	6/14/2021	379.39	222.70	156.69	
	02N21W11J05S	10/19/2021	379.39	225.70	153.69	
		12/7/2021	379.39	224.50	154.89	
	02N21W11J06S	3/9/2021	379.39	185.90	193.49	
		6/14/2021	379.39	185.80	193.59	
Las Posas Valley – West		10/19/2021	379.39	187.90	191.49	
Management Area		12/7/2021	379.39	187.40	191.99	
		3/9/2021	417.89	455.50	-37.61	
	02N1241W/4211046	6/14/2021	417.89	461.40	-43.51	
	02N21W12H01S	10/18/2021	417.89	464.70	-46.81	
		12/7/2021	417.89	461.60	-43.71	
		3/22/2021	440.00	600.30	-160.30	
	02N21W13A01S	6/16/2021	440.00	607.00	-167.00	
	02N21W13A013	10/21/2021	440.00	611.60	-171.60	
		12/8/2021	440.00	613.30	-173.30	
		3/9/2021	263.87	331.80	-67.93	
	02N21W15M03S	6/14/2021	263.87	332.70	-68.83	
	0211211015101055	10/19/2021	263.87	350.00	-86.13	
		12/7/2021	263.87	338.00	-74.13	
		3/9/2021	259.90	17.30	242.60	
	02N21W16J01S	6/14/2021	259.90	17.52	242.38	
	0211211010013	10/19/2021	259.90	18.35	241.55	
		12/7/2021	259.90	18.00	241.90	
		3/17/2021	118.41	107.90	10.51	
	02N21W18H03S	6/15/2021	118.41	113.10	5.31	
	0211211010000	10/18/2021	118.41	115.40	3.01	
		12/6/2021	118.41	116.40	2.01	

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/17/2021	117.88	160.27	-42.39	
	02N21W18H12S	6/9/2021	117.88	183.30	-65.42	
	021021001011123	10/18/2021	117.88	197.20	-79.32	
		12/6/2021	117.88	189.05	-71.17	
		3/9/2021	673.00	819.40	-146.40	
Las Posas Valley – West	03N20W32H03S	6/15/2021	673.00	822.60	-149.60	
Management Area	031120113211033	10/18/2021	673.00	826.50	-153.50	
		12/7/2021	673.00	832.70	-159.70	
		3/22/2021	564.11	516.50	47.61	
	03N21W35P02S	6/14/2021	564.11			Pumping
	03112110331 023	10/20/2021	564.11	535.30	28.81	
		12/7/2021	564.11			Pumping
Lockwood Valley	08N21W33R03S*	4/30/2021	5,150.00	57.20	5,092.80	
LOCKWOOD Valley	00112110051(055	9/28/2021	5,150.00			Pumping
		3/18/2021	251.25	199.25	52.00	
	02N22W09L03S	6/14/2021	251.25			No site access
	02112211092033	10/11/2021	251.25			No site access
		12/7/2021	251.25			No site access
	02N22W09L04S	3/18/2021	251.25	160.10	91.15	
		6/14/2021	251.25			No site access
		10/11/2021	251.25			No site access
Mound		12/7/2021	251.25			No site access
Mouria	02N22W16K01S	3/10/2021	149.37	164.54	-15.17	
		6/8/2021	149.37	172.40	-23.03	
		10/11/2021	149.37	178.40	-29.03	
		12/3/2021	149.37	181.17	-31.80	
		3/18/2021	68.71			No site access
	02N23W13K03S	6/8/2021	68.71	75.50	-6.79	
	02102300131(033	10/12/2021	68.71	84.80	-16.09	
		12/7/2021	68.71	77.90	-9.19	
		3/26/2021	1,045.50	98.60	946.90	
	04N22W04Q01S	6/28/2021	1,045.50	101.40	944.10	
	04112211040013	10/6/2021	1,045.50	105.25	940.25	
		12/15/2021	1,045.50	111.80	933.70	
		3/26/2021	895.97	172.50	723.47	
	04N22W05D03S	6/25/2021	895.97	176.30	719.67	
	04112211030030	10/6/2021	895.97	207.90	688.07	
Ojai Valley		12/15/2021	895.97	203.42	692.55	
Ojai valley		3/16/2021	950.22	197.20	753.02	
	04N22W05H04S	6/25/2021	950.22			No site access
	0411221100011040	10/26/2021	950.22	244.80	705.42	
		12/15/2021	950.22	237.74	712.48	
		3/16/2021	892.09	196.40	695.69	
	04N22W05L08S*	6/25/2021	892.09	200.80	691.29	
	04INZZVVUDLU65	10/6/2021	892.09	192.50	699.59	
		12/15/2021	892.09	204.80	687.29	

Appendix C -	Groundwater	Level	Measurement Data
--------------	-------------	-------	------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/26/2021	843.47	120.80	722.67	
		6/28/2021	843.47	123.30	720.17	
	04N22W05M01S	10/26/2021	843.47	153.00	690.47	
		12/15/2021	843.47	164.10	679.37	
		3/16/2021	846.66	89.30	757.36	
		6/25/2021	846.66	93.50	753.16	
	04N22W06D01S	10/6/2021	846.66	125.00	721.66	
		12/16/2021	846.66	129.20	717.46	
		3/26/2021	853.21	111.80	741.41	
		6/25/2021	853.21	115.20	738.01	
	04N22W06D05S	10/6/2021	853.21	135.00	718.21	
		12/16/2021	853.21	139.80	713.41	
		3/16/2021	801.80	112.90	688.90	
	04N22W06K03S	6/25/2021	801.80	117.70	684.10	
		10/1/2021	801.80	142.66	659.14	
		12/3/2021	801.80	141.50	660.30	
		3/16/2021	812.70	124.70	688.00	
		6/25/2021	812.70	124.70	687.60	
	04N22W06K12S	10/6/2021	812.70	123.10	007.00	
		12/16/2021				No Tape Access
			812.70			No Tape Access
	04N22W06M01S	3/16/2021	794.78	71.20	723.58	
		6/25/2021	794.78	79.10	715.68	
		10/6/2021	794.78	91.20	703.58	
		12/16/2021	794.78	89.40	705.38	
	04N22W07B02S	3/26/2021	773.77	76.10	697.67	
Ojai Valley		6/28/2021	773.77	78.90	694.87	
		10/26/2021	773.77	95.50	678.27	
		12/16/2021	773.77	97.50	676.27	
		3/26/2021	771.20	37.20	734.00	
	04N22W07G01S	6/28/2021	771.20	38.20	733.00	
		10/26/2021	771.20	77.00	694.20	
		12/16/2021	771.20	72.10	699.10	
		3/26/2021	870.57	76.90	793.67	
	04N22W08B02S	6/25/2021	870.57	82.30	788.27	
	0	10/6/2021	870.57	154.50	716.07	
		12/15/2021	870.57	155.00	715.57	
		3/26/2021	786.38	44.60	741.78	
	04N23W01K02S	6/25/2021	786.38	46.60	739.78	
	041120110111020	10/26/2021	786.38	55.00	731.38	
		12/16/2021	786.38	57.60	728.78	
		3/16/2021	869.49	77.80	791.69	
	04N23W02K01S	6/25/2021	869.49	81.10	788.39	
	04112311020013	10/28/2021	869.49			Could Not Read Tape
		12/16/2021	869.49	166.00	703.49	
		3/26/2021	716.61	32.10	684.51	
	04N122W142L102C	6/28/2021	716.61	32.90	683.71	
	04N23W12H02S	10/28/2021	716.61	43.00	673.61	
		12/16/2021	716.61	40.60	676.01	
		3/2/2021	682.50			No Site Access
	0510014/00 1000	6/23/2021	682.50			No Site Access
	05N22W32J02S					
	05N22W32J02S	9/30/2021	682.50			No Site Access

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/9/2021	138.78			No site access
	02N1241007D048	6/15/2021	138.78	191.40	-52.62	
	02N21W07P04S	10/26/2021	138.78	191.50	-52.72	
Oxnard – Forebay		12/6/2021	138.78			Pumping
Management Area		3/22/2021	86.96	92.76	-5.80	
		6/14/2021	86.96			No site access
	02N22W26E01S	10/20/2021	86.96	103.56	-16.56	
		12/8/2021	86.96	106.39	-19.43	
		3/9/2021	43.33	127.42	-84.09	
	01N21W04N02S	6/9/2021	43.33	141.65	-98.32	
	01112100411023	10/13/2021	43.33	162.70	-119.37	
		12/2/2021	43.33	159.70	-116.37	
		3/9/2021	47.85	58.00	-10.15	
	01N21W06L04S	6/9/2021	47.85	65.25	-17.40	
		10/13/2021	47.85			Tape Hangs Up
		12/6/2021	47.85			Tape Hangs Up
	01N21W07H01S*	3/9/2021	40.87	48.08	-7.21	
		6/9/2021	40.87	52.80	-11.93	
		10/13/2021	40.87	55.00	-14.13	
		12/6/2021	40.87	52.38	-11.51	
		3/9/2021	31.50	113.17	-81.67	
	0410411/001000	6/9/2021	31.50	126.70	-95.20	
	01N21W08N03S	10/12/2021	31.50	146.97	-115.47	
Quand		12/6/2021	31.50	137.31	-105.81	
Oxnard		3/9/2021	39.96	100.20	-60.24	
	041104110000040	6/9/2021	39.96	106.42	-66.46	
	01N21W09C04S	10/13/2021	39.96	122.35	-82.39	
		12/2/2021	39.96	117.02	-77.06	
		3/9/2021	25.69	109.20	-83.51	
	0410414/404040	6/16/2021	25.69	124.30	-98.61	
	01N21W16A04S	10/12/2021	25.69	137.00	-111.31	
		12/6/2021	25.69	130.60	-104.91	
		3/9/2021	22.79	113.40	-90.61	
	0410414/101040	6/16/2021	22.79	126.05	-103.26	
	01N21W16M01S	10/12/2021	22.79	146.95	-124.16	
		12/6/2021	22.79	134.70	-111.91	
		3/9/2021	19.39	113.01	-93.62	
	0.0000000000000000000000000000000000000	6/16/2021	19.39	123.80	-104.41	
	01N21W16P03S	10/12/2021	19.39	137.35	-117.96	
		12/6/2021	19.39	130.16	-110.77	

Appendix C	- Groundwater	Level	Measurement Data
------------	---------------	-------	------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
	0001	3/9/2021	28.21			Pumping
	-	6/9/2021	28.21	40.1	-11.9	T unping
	01N21W17D02S	10/12/2021	28.21	43.10	-14.89	
	-	12/6/2021	28.21			Pumping
		3/9/2021	15.74	71.5	-55.8	i unping
		6/16/2021	15.74	95.6	-79.8	
	01N21W21N01S	10/12/2021	15.74	98.8	-83.1	
	-	12/6/2021	15.74	99.4	-83.6	
		3/9/2021	14.75	89.8	-75.0	
	-	6/16/2021	14.75			Pumping
	01N21W28D01S	10/18/2021	14.75	123.0	-108.3	i unping
		12/6/2021	14.75	110.3	-95.6	
		3/17/2021	18.19	26.5	-8.3	
		6/16/2021	18.19		-0.0	Pumping
	01N21W29B03S	10/12/2021	18.19			Pumping
	-	12/6/2021	18.19	31.6	-13.4	T unping
		3/15/2021	10.10	74.0	-64.0	
		6/14/2021	10.00	88.3	-78.3	
	01N21W32K01S*	10/18/2021	10.00	103.8	-93.8	
	-	12/15/2021	10.00		-95.0	Net Measured
		3/9/2021	38.46			Not Measured No measure port
	01N22W12N03S -	6/9/2021	38.46			No measure port
		10/13/2021	38.46			No measure port
		12/6/2021	38.46			No measure port
Oxnard		3/9/2021	34.00	89.2	-55.2	No measure port
	-	6/9/2021	34.00	89.2	-55.2	
	01N22W12R01S	10/13/21	34.00		-55.2	No site access
		12/6/21	34.00	102.9	-68.9	NO SILE ACCESS
		3/9/21	33.97		-00.9	Tape hangs up
	-	6/16/21	33.97			Tape hangs up
	01N22W14K01S	10/12/21	33.97			Tape hangs up
	-	12/6/21	33.97			Tape hangs up
		3/9/21	15.28	36.5	-21.2	Tape hangs up
		6/8/21	15.28		-21.2	No site access
	01N22W21B03S	10/12/21	15.28			No site access
	-	12/7/21	15.28			No site access
		3/9/21	29.10	39.3	-10.2	NO SILE ACCESS
	-	6/16/21				
	01N22W24C02S		29.10	41.1	-12.0	
		10/12/21	29.10	43.9	-14.8	
		12/6/21 3/10/21	29.10	45.4	-16.3	
		6/16/21	13.06	66.5	-53.5	Pumping
	01N22W26K03S		13.06			Pumping
		10/12/21	13.06	98.2	-85.1	
		12/6/21	13.06	85.3	-72.2	
		3/9/2021	13.00	63.20	-50.20	Duranta a
	01N22W26M03S	6/16/2021	13.00			Pumping
		10/12/2021	13.00	88.30	-75.30	
		12/6/2021	13.00	79.80	-66.80	

Appendix C -	Groundwater	Level	Measurement	Data
--------------	-------------	-------	-------------	------

<u>Appendix C</u> – Groui		_		Donth	Floy	NMC
GW Basin/Subbasin	SWN	Date		Depth	Elev.	NIVIC
		3/9/2021	11.50	66.17	-54.67	Duranina
	01N22W26M03S	6/16/2021	11.50	0.00	11.50 -86.70	Pumping
		10/12/2021	11.50	98.20		Pumping
		12/6/2021	11.50	0.00	11.50	
		3/10/2021	102.70	142.67	-39.97	Duranian
	01N22W36B02S	6/9/2021	102.70	141.83	-39.13	Pumping
		10/19/2021	102.70	158.16	-55.46	Pumping
						Pumping
		-				
	02N21W19A03S					
	-					
	02N21W19B02S					
	10/18/2021 101.80 122.20 -20.40 12/7/2021 101.80 115.85 -14.05 3/10/2021 113.36 187.20 -73.84 6/9/2021 113.36 181.20 -67.84					
	02N21W20F02S	-				
						No site access
	02N21W20M06S	-				
						Duranian
		-				
Oxnard						Pumping
		-				
	02N21W31P02S					
		-				
		-				
	02N21W31P03S					
		-				
			42.38	52.47	-10.09	
		3/10/2021				Bumping
	02N22W24P01S	6/8/2021 10/12/2021	42.38 42.38	59.15 66.52	-16.77 -24.14	Pumping Pumping
		12/7/2021	42.38	63.85	-24.14	Fumping
		3/10/2021	42.30		42.30	
		6/8/2021	42.30	0.00 56.83	-14.53	
	02N22W30K01S	10/12/2021	42.30	64.40	-14.55	
		12/7/2021	42.30		-22.10	
		3/10/2021	42.30	63.09 0.00	40.10	
		6/8/2021	40.10	0.00	40.10	
	02N22W31A01S	-			40.10	
		10/12/2021 12/7/2021	40.10 40.10	0.00	40.10	
		3/10/2021		0.00	23.22	
		-	23.22			No sito accoso
	02N22W32Q03S	6/8/2021	23.22	0.00	23.22	No site access
		10/12/2021 12/7/2021	23.22 23.22	0.00	23.22 23.22	No site access
Denotes basin key water	l r lovol woll	12/1/2021	23.22	0.00	23.22	Pumping

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC		
		3/18/2021	655.63	101.60	554.03			
	0414014400040	6/14/2021	655.63	115.33	540.30			
	04N18W19R01S	10/11/2021	655.63	125.70	529.93			
		12/3/2021	655.63	138.00	517.63			
		3/18/2021	623.30	61.85	561.45			
	041401/201055	6/14/2021	623.30	71.50	551.80	Pumping		
	04N18W30J05S	10/11/2021	623.30	92.15	531.15			
		12/3/2021	623.30	98.32	524.98			
		3/18/2021	611.09	79.20	531.89			
	04N19W25C02S*	6/14/2021	611.09	83.00	528.09			
	04111911230023	10/11/2021	611.09	93.90	517.19			
		12/3/2021	611.09	98.10	512.99			
		3/18/2021	593.97			Pumping		
Dim	04N19W25K04S	6/14/2021	593.97			Pumping		
Piru	04111910251(045	10/11/2021	593.97			Pumping		
		12/3/2021	593.97	76.38	517.59			
		3/18/2021	563.00	40.17	522.83			
	04N19W26P01S	6/14/2021	563.00			Pumping		
		10/11/2021	563.00			Pumping		
		12/3/2021	563.00			Pumping		
	04010W34K01S	3/18/2021	519.51	14.67	504.84			
		6/14/2021	519.51			No site access		
	04111910341(013	10/11/2021	519.51			No site access		
	04N19W34K01S -	12/3/2021	519.51			No site access		
		3/18/2021	541.08	21.20	519.88	No site access		
	04N19W35L02S	6/14/2021	541.08	28.20	512.88			
	04111900352023	10/11/2021	541.08	34.80	506.28			
		12/3/2021	541.08	37.90	503.18			
		3/9/2021	96.17	189.16	-92.99			
	01N21W01M02S	6/10/2021	96.17	204.70	-108.53			
	0111210001101023	10/12/2021	96.17	211.60	-115.43			
		12/6/2021	96.17	209.95	-113.78			
		3/9/2021	89.51	97.40	-7.89			
	0410041000 1000	6/10/2021	89.51	98.37	-8.86			
	01N21W02J02S	10/12/2021	89.51	107.80	-18.29			
		12/6/2021	89.51	107.53	-18.02			
Pleasant Valley		3/9/2021	67.98			Capped		
	0410410/001040	6/10/2021	67.98					
	01N21W02P01S	10/12/2021	67.98			Pumping Pumping Pumping Pumping Pumping Pumping Pumping No site access No site access No site access No site access		
		12/6/2021	67.98					
		3/9/2021	72.28	157.30	-85.02			
		6/10/2021	72.28	184.70	-112.42			
	01N21W03C01S*	10/12/2021	72.28	179.30	-107.02			
		12/2/2021	72.28	192.10	-119.82			

Appendix C -	Groundwater	Level	Measurement	Data
--------------	-------------	-------	-------------	------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/9/2021	47.52	135.90	-88.38	
	01N21W04K01S	6/16/2021	47.52	151.50	-103.98	
		10/18/2021	47.52	166.80	-119.28	
		12/6/2021	47.52	157.80	-110.28	
		3/30/2021	30.56	113.20	-82.64	
		6/9/2021	30.56			No site access
	01N21W09J03S	10/13/2021	30.56			No site access
		12/2/2021	30.56			Image: second
		3/9/2021	38.72	128.42	-89.70	
	01N21W10G01S	6/16/2021	38.72			Pumping
		10/18/2021	38.72	169.00	-130.28	
		12/6/2021	38.72	153.95	-115.23	
		3/9/2021	50.11	22.65	27.46	
		6/10/2021	50.11	24.70	25.41	
	01N21W14A01S	10/12/2021	50.11	27.45	22.66	
		12/6/2021	50.11	26.05	24.06	
Pleasant Valley		3/9/2021	33.17	15.53	17.64	
		6/10/2021	33.17	16.33	16.84	
	01N21W15H01S	10/12/2021	33.17	19.55	13.62	
		12/6/2021	33.17	18.75	14.42	
	02N20W19M05S	3/17/2021	200.47	196.20	4.27	
		6/10/2021	200.47	185.16	15.31	
		10/13/2021	200.47	188.15	12.32	
		12/2/2021	200.47	187.90	12.57	
		3/9/2021	90.60	176.45	-85.85	
		6/10/2021	90.60	192.20	-101.60	
	02N21W35M02S	10/12/2021	90.60	200.60	-110.00	
		12/6/2021	90.60	197.89	-107.29	
		3/9/2021	111.18	104.33	6.85	
		6/10/2021	111.18	106.70	4.48	
	02N21W36N01S	10/12/2021	111.18	117.42	-6.24	
		12/6/2021	111.18	114.95	-3.77	
		3/18/2021	248.75	129.94	118.81	
		6/8/2021	248.75	127.70	121.05	
	02N22W03K02S	10/11/2021	248.75	133.20	115.55	
		12/3/2021	248.75	134.52	114.23	
		3/18/2021	291.50	202.74	88.76	
		6/8/2021	291.50	201.90	89.60	
	02N22W03M02S	10/11/2021	291.50	202.96	88.54	
		12/3/2021	291.50	205.34	86.16	
Santa Paula		3/18/2021	362.18	167.04	195.14	
		6/14/2021	362.18	173.10	189.08	
	02N22W09K02S	10/11/2021	362.18	176.30	185.88	
		12/3/2021	362.18	175.99	186.19	
		3/18/2021	283.35	105.75	177.60	
		6/14/2021	283.35	0.00	283.35	
	03N21W17Q01S	10/11/2021	283.35	106.10	177.25	
		12/3/2021	283.35	105.75	177.60	

Appendix C -	Groundwater	Level	Measurement	Data
--------------	-------------	-------	-------------	------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/18/2021	235.39	78.48	156.91	
	02N1241W/40D046	6/14/2021	235.39			Pumping
	03N21W19R01S	10/11/2021	235.39	93.20	142.19	
		12/3/2021	235.39	91.69	143.70	
		3/18/2021	221.21	71.67	149.54	
Conto Doulo	0010414/205040	6/14/2021	221.21			Pumping
Santa Paula	03N21W30F01S	10/11/2021	221.21	76.25	144.96	
		12/3/2021	221.21			Pumping
		3/18/2021	180.89	43.75	137.14	
	03N21W36K05S	6/8/2021	180.89	45.37	135.52	
	03112110301005	10/11/2021	180.89	48.83	132.06	
		12/3/2021	180.89	45.45	135.44	
		3/17/2021	870.00	54.80	815.20	
	0014014040000	6/10/2021	870.00	55.80	814.20	
	02N18W04R02S	10/13/2021	870.00	55.70	814.30	
		12/2/2021	870.00	56.40	813.60	
Simi Valley		3/26/2021	926.40	92.80	833.60	
	02N18W10A02S	06/25/2021	926.40	90.70	835.70	
	021110VV10A023	9/24/2021	926.40	92.80	833.60	
		12/3/2021	926.40	91.70	834.70	
		3/17/2021	619.29	163.52	455.77	
	02N19W10R01S	6/10/2021	619.29	165.20	454.09	
	0211190010R013	10/13/2021	619.29	169.66	449.63	
		12/2/2021	619.29	170.75	448.54	
		3/17/2021	718.95	101.80	617.15	
Tierre Deiede	02N19W12M03S	6/10/2021	718.95	102.80	616.15	
Tierra Rejada	0210190012101035	10/13/2021	718.95	105.70	613.25	
		12/2/2021	718.95	104.10	614.85	
		3/17/2021	678.12			No site access
	02N19W14P01S	6/10/2021	678.12			No site access
	0211191145013	10/13/2021	678.12			No site access
		12/2/2021	678.12	36.23	641.89	No site access

4	<u> Appendix C</u> – Grour	ndwater Level I	Measureme	ent Data
	GW Basin/Subbasin	SWN	Date	RP

Appendix C - Grour		_		Donth		NIMO
GW Basin/Subbasin	SWN	Date 3/4/2021	8P 945.42	Depth	Elev.	NMC No site access
						NO SILE ACCESS
	01N19W02L01S	6/30/2021 10/5/2021	945.42 945.42	102.30 52.80	843.12 892.62	
		12/27/2021	945.42	56.00	889.42	
		3/4/2021 6/30/2021	908.79 908.79	22.90 19.20	885.89 889.59	
	01N19W14K04S			24.30		
		10/5/2021 12/20/2021	908.79 908.79	24.30	884.49 884.79	
		3/4/2021	908.79	24.00	876.73	
		6/30/2021	903.53	23.80	879.73	
	01N19W15E01S	10/5/2021	903.53	23.80	875.33	
		12/20/2021	903.53	29.00	874.53	
				29.00	074.03	te e much much
		3/4/2021	1,126.54			too much rust
	01N20W24H02S	6/30/2021	1,126.54			too much rust
		10/5/2021	1,126.54			Dry
		12/20/2021	1,126.54			Dry
		3/3/2021	1,325.90	26.50	1,299.40	
	04N22W10K02S	6/25/2021	1,325.90	28.80	1,297.10	
		10/1/2021	1,325.90	28.00	1,297.90	
		12/15/2021	1,325.90	26.50	1,299.40	
	04N22W21F01S	10/28/2021	2,570.00			Tape Hung Up
		12/16/2021	2,570.00	148.00	2,422.00	
	04N22W22K01S	10/28/2021	2,400.00	245.25	2,154.75	
UNDEFINED		12/16/2021	2,400.00	245.06	2,154.94	
		3/1/2021	554.50			Flowing
	04N23W14M04S	6/23/2021	554.50			Flowing
		10/1/2021	554.50			Flowing
		12/10/2021	554.50			Flowing
		3/2/2021	619.89	73.40	546.49	
	04N23W16P01S	6/23/2021	619.89	73.70	546.19	
		9/30/2021	619.89	74.30	545.59	
		12/10/2021	619.89			Tape Hung Up
		3/2/2021	402.37	30.30	372.07	
	04N23W28G01S	6/25/2021	402.37	34.20	368.17	
		9/30/2021	402.37			Dry
		12/10/2021	402.37			Dry
		3/1/2021	331.80	24.70	307.10	
	04N23W33M03S	6/23/2021	331.80	25.90	305.90	
		9/29/2021	331.80	23.00	308.80	
		12/10/2021	331.80	23.70	308.10	
		3/1/2021	626.45	6.10	620.35	
	04N24W13J04S	6/23/2021	626.45	10.20	616.25	
		9/29/2021	626.45	14.25	612.20	
		12/10/2021	626.45	14.00	612.45	
		3/1/2021	642.12	2.50	639.62	
	04N24W13N01S	6/23/2021	642.12	4.60	637.52	
		9/29/2021	642.12	5.55	636.57	
		12/10/2021	642.12	4.70	637.42	

Appendix C -	Groundwater	Level	Measurement Data
--------------	-------------	-------	------------------

<u>Appendix C</u> – Grou		_			-	
GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/3/2021	1,278.80	20.90	1,257.90	
	04N22W09Q02S	6/25/2021	1,278.80	23.60	1,255.20	
		10/1/2021	1,278.80	26.00	1,252.80	
		12/15/2021	1,278.80	26.20	1,252.60	
		3/3/2021	1,420.60	20.30	1,400.30	
Upper Ojai Valley	04N22W11P02S	6/25/2021	1,420.60	23.30	1,397.30	
		10/26/2021	1,420.60	32.50	1,388.10	
		12/15/2021	1,420.60	33.50	1,387.10	
		3/3/2021	1,616.90	134.20	1,482.70	
	04N22W12F04S	6/25/2021	1,616.90	149.80	1,467.10	
		10/1/2021	1,616.90	160.00	1,456.90	
		12/15/2021	1,616.90	160.70	1,456.20	
		3/26/2021	50.86	36.30	14.56	
	03N23W32Q03S	6/25/2021	50.86	33.60	17.26	
	00112011020000	10/1/2021	50.86	31.70	19.16	
Ventura River - Lower		12/10/2021	50.86	35.20	15.66	
		3/26/2021	46.10	36.90	9.20	
	03N23W32Q07S	6/25/2021	46.10	33.20	12.90	
	03112311320070	10/1/2021	46.10	26.40	19.70	
		12/10/2021	46.10	26.30	19.80	
		3/1/2021	293.20	45.50	247.70	
	03N23W05B01S	6/23/2021	293.20	46.60	246.60	
	03142377036013	9/29/2021	293.20	47.30	245.90	
		12/10/2021	293.20	47.80	245.40	
		3/1/2021	239.19	13.80	225.39	
	03N23W08B07S	6/23/2021	239.19	0.00	239.19	
	03112311060073	9/30/2021	239.19	14.70	224.49	
		12/10/2021	239.19	15.10	224.09	
		3/2/2021	760.85			No site access
	04N02W02M04C	6/23/2021	760.85			No site access
	04N23W03M01S	9/30/2021	760.85	104.50	656.35	
		12/10/2021	760.85	105.80	655.05	No site access
		3/2/2021	713.04			No site access
Mantura Diven Hanan	0410000404040	6/29/2021	713.04			No site access
Ventura River - Upper	04N23W04J01S	9/23/2021	713.04	73.00	640.04	
		12/15/2021	713.04	65.50	647.54	
		3/2/2021	662.30	46.30	616.00	
	0.4110014/00504.0	6/29/2021	662.30	38.10	624.20	
	04N23W09B01S	9/30/2021	662.30	62.80	599.50	
		12/10/2021	662.30	59.60	602.70	
		3/2/2021	680.90	96.60	584.30	
	0.410014/171000	6/29/2021	680.90	98.80	582.10	
	04N23W15A02S	9/30/2021	680.90	93.40	587.50	
		12/10/2021	680.90	93.60	587.30	
		3/2/2021	634.30	128.90	505.40	
		6/23/2021	634.30	132.20	502.10	
	04N23W15D02S	9/30/2021	634.30	121.05	513.25	
		12/15/2021	634.30	149.00	485.30	

Appendix C –	Groundwater Le	evel Measurement Data
--------------	----------------	-----------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/2/2021	569.10	44.70	524.40	
	04N23W16C04S	6/23/2021	569.10	63.20	505.90	
	04112311160045	9/30/2021	569.10	73.70	495.40	
		12/10/2021	569.10			Tape Hung Up
		3/1/2021	488.89	27.80	461.09	
	04N23W20A01S	6/23/2021	488.89	28.60	460.29	
	041N23VV20A013	9/29/2021	488.89			No site access
		12/10/2021	488.89			No site access
		3/1/2021	396.58	32.30	364.28	
Ventura River - Upper	04N23W29F02S	6/23/2021	396.58	32.70	363.88	
ventura River - Opper	0411231129F023	9/29/2021	396.58	56.10	340.48	
		12/10/2021	396.58	68.50	328.08	
		3/26/2021	829.00			No site access
	05N23W33B03S	6/29/2021	829.00			Pumping
	05112311330035	9/23/2021	829.00	35.35	793.65	
		12/15/2021	829.00	26.30	802.70	
		3/2/2021	816.21	69.20	747.01	
	05N23W33G01S	6/29/2021	816.21	34.70	781.51	
	03112311336013	9/29/2021	816.21			Pumping
		12/15/2021	816.21	20.50	795.71	

Appendix D – Water Quality Section

TABLES

<u>Page</u>

Table D-1:	General Minerals	152
Table D-2:	California Title 22 Metals	159
Table D-3:	Radiochemistry	161

General Minerals Tab	ole D-1		
Mineral	Abbreviation	Reported Units	Laboratory Analytical Method
Boron	В	mg/l	EPA 200.7
Bicarbonate	HCO ₃ ⁻	mg/l	SM23320B
Calcium	Са	mg/l	EPA 200.7
Copper	Cu	µg/l	EPA 200.7
Carbonate	CO3 ²⁻	mg/l	SM23320B
Chloride	CI	mg/l	EPA 300.0
Electrical Conductivity	eC	µmhos/cm	SM2510B
Fluoride	F	mg/l	EPA 300.0
Iron	Fe	µg/l	EPA 200.7
Potassium	К	mg/l	EPA 200.7
Magnesium	Mg	mg/l	EPA 200.7
Manganese	Mn	µg/l	EPA 200.7
Nitrate	NO ₃ ⁻	mg/l	SM4500NO3F
Sodium	Na	mg/l	EPA 200.7
Sulfate	SO4 ²⁻	mg/l	EPA 300.0
Total Dissolved Solids	TDS	mg/l	EPA 200.7
Zinc	Zn	µg/l	EPA 200.7
рН	рН	units	SM4500-H B

Table D-1 General Minerals

GW Basin/Subbasin	SWN	Date	В	HCO ₃ -	Са	CO3 ²⁻	Ċ	Cu	ЕC	Ĺ.	Fe	×	Mg	Mn	NO ³⁻	Na	SO_4^{2-}	TDS	ZN	рН
	02N19W19P02S	10/4/2021	0.2	340	65	ND	108	ND	1170	0.2	ND	٢	65 2	20 6	63.1	71	111	760	ND	7.1
	02N19W20L01S	12/1/2021	0.2	420	93	ND	104	ND	1450	0.2	50	1	83	10 7	74.5	74	175	950	ND	7.1
	02N19W20M04S	10/4/2021	0.1	380	74	DN	137	QN	1290	0.3	ΔN	3	77 N	ND 2	25.9	69	128	800	ND	7.3
Arroyo Santa Kosa	02N20W23G03S	11/18/2021	0.1	320	11	QN	132	DN	1310	0.2	ΠD	2	78 N	ND 8	87.4	81	95	800	ND	7.0
vancy	02N20W23R01S	10/4/2021	0.3	300	06	ND	179	ND	1530	0.2	ND	1	71 N	ND 8	80.8 1	123	200	1010	ND	7.0
	02N20W24M02S	10/4/2021	0.2	310	48	QN	215	DN	1360	0.3	QN	3	56 3	30 (6.1 1	132	76.2	820	ΔN	7.4
	02N20W26C02S	10/4/2021	0.3	350	97	DN	169	QN	1600	0.3	QN	٢	75 N	ND 7	74.2 1	118	218	1060	DN	7.0
Comintorio	04N25W25N06S	10/21/2021	0.3	420	123	DN	108	DN	1570	0.3	ΔN	2	55 N	ND 2	27.5	95	319	1090	ND	7.2
Calplinelia	04N25W35G01S	10/21/2021	0.3	410	147	DN	107	QN	1490	0.3	QN	2	52 N	ND 2	27.7	94	314	1100	DN	7.1
Conejo	01N19W08G02S	9/23/2021	0.1	370	130	ND	133	ND	1830	0.2	ND	, 3	103 1	110 1	ND 1	101	478	1350	ND	7.6
Cuddy Ranch Area	08N20W04N02S	11/12/2021	QN	320	99	QN	15	Q	590	0.2	QN	2	۷ 6	QN	1.7	44	18	350	QN	7.0
	07N23W15P01S	10/27/2021	0.2	210	224	ND	8	ND	2460	1.1	ND	3	98 N	ND	3.4	78 `	1020	2090	ND	7.6
	08N24W17G02S	11/12/2021	0.4	280	15	ND	106	ND	1200	0.3	70	2	3 2	20 1	ND 2	232	206	740	ND	8.1
	09N23W30E05S	10/27/2021	0.7	350	87	DN	251	DN	1860	0.9	ΔN	3	16 N) DN	5.9 2	260	215	1100	ND	7.3
	09N24W33J03S	10/27/2021	0.4	310	77	ND	110	ND	1400	0.6	DN	3	13 N	ND 1	10.3 1	194	197	860	ND	7.6
	03N20W01F05S	9/9/2021	0.5	280	139	DN	69	DN	1510	0.7	ΔN	5	51 N	ND 3	30.8 1	101	455	1130	ND	7.2
	03N20W09D01S	9/9/2021	0.8	330	204	ND	85	ND	1850	0.6	DN	6	68 N	ND 4	45.9 1	117	575	1430	ND	7.3
	03N21W01P08S	9/8/2021	0.3	340	193	ND	58	ND	1490	0.5	DN	3	52 6	650 5	52.6	85	369	1080	ND	5.1
	04N19W19N01S	9/8/2021	0.5	320	193	ND	42	ND	1590	0.7	ND	5	61 3	350 2	2.6 1	117	509	1220	ND	7.5
Fillmore	04N19W31F01S	9/8/2021	0.6	260	144	ND	75	ND	1390	0.7	ND	6	57 N	ND 1	12.7 1	101	367	970	ND	7.4
	04N20W26D03S	9/9/2021	0.3	260	152	ND	51	ND	1170	0.5	ND	2	27 N	ND 4	44.7	51	285	820	ND	7.4
	04N20W31H04S	9/9/2021	ND	320	138	ND	19	ND	666	0.4	ND	2	32 N	ND 1	16.9	41	220	660	ND	7.1
	04N20W31P01S	9/9/2021	0.2	400	191	ND	50	ND	1450	0.5	ND	3	56 N	ND 7	76.2	73	332	1100	ND	7.0
	04N20W36P04S	9/9/2021	0.6	280	126	ND	63	ND	1400	0.6	DN	5	47 N	ND 1	15.8	66	378	980	160	7.1
Hidden Valley	01N19W19H03S	9/23/2021	0.1	340	61	ND	41	ND	859	0.1	DN	3	42 4	40 1	ND	54	109	520	ND	7.3
	01N19W29E04S	10/12/2021	QN	350	89	QN	59	QN	997	QN	Q	QN	29 N	DN	QN	61	144	580	QN	7.2
	01N20W25C01S	10/19/2021	Q	390	166	QN	118	Q	1540	0.1	QN	33	61 1	60 1	QN		287	1180	30	6.7
	01N20W25F04S	10/19/2021	0.1	250	23	Q	32	Q	568	Q	Q	QN	5	50 1	DN D	101	36.6	350	120	7.7

1580 0.4 ND 4 1840 0.6 ND 3 1840 0.4 ND 3 1700 0.3 ND 4 868 0.6 ND 3 1770 0.3 ND 4 868 0.6 ND 3 1770 0.3 ND 4 868 0.6 ND 4 1770 0.3 ND 4 1770 0.3 ND 4 1370 0.2 ND 4 1370 0.2 ND 4 2100 0.3 ND 5 2100 0.3 ND 5 2100 0.3 ND 5 2100 0.3 ND 5 22050 0.2 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 1620<	127 127 148 148 133 133 133 133 134 135 136 137 138 138 138 138 138 138 139 141 154 139 139 141 154 154 121 131 132 213 214 215 215	220 110 250 94 240 124 230 128 140 62 250 144 250 144 250 145 250 145 250 146 250 175 250 73 200 73 200 73 200 73 200 73 200 73 200 80 310 179 260 127 310 160 47 100 160 47 210 71 210 71 210 71 210 71 210 71	0.6 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 ND ND ND ND ND 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0
1840 0.6 ND 3 1690 0.4 ND 3 1700 0.3 ND 4 868 0.6 ND 3 1770 0.3 ND 4 1770 0.3 ND 4 1770 0.3 ND 4 1960 0.5 ND 4 1370 0.2 ND 4 1370 0.2 ND 4 1370 0.2 ND 5 2100 0.3 ND 6 2100 0.3 ND 5 2100 0.3 ND 5 2100 0.3 ND 5 2050 0.2 ND 5 1930 0.4 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 1620			94 124 128 128 128 62 62 126 144 175 173 174 175 174 175 175 171 171 171 173 174 175 175 176 177 178 179 171 171 171 173 174 175 175 176 177 178
1000 0.3 ND 4 17700 0.3 ND 4 17700 0.3 ND 4 17700 0.3 ND 4 1960 0.5 ND 4 1960 0.5 ND 4 1180 0.2 ND 4 1370 0.2 ND 4 1370 0.2 ND 6 2100 0.2 ND 6 22050 0.2 ND 5 1930 0.4 ND 5 724 0.3 ND 5 457 0.2 ND 2 679 0.3 ND 3 855 0.5 ND 3			128 128 128 126 126 127 175 175 175 175 175 175 175 175 175 175 175 175 173 80 159 159 173 80 159 173 80 159 173 173 80 67 67 73 73
868 0.6 ND 4 1770 0.3 ND 3 1770 0.3 ND 3 1960 0.5 ND 4 1180 0.2 ND 4 1180 0.2 ND 4 1370 0.2 ND 4 1370 0.2 ND 6 1370 0.2 ND 6 2100 0.3 ND 6 2050 0.2 ND 6 1930 0.4 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 1620 0.8 ND 2 1620 0.8 ND 3 679<		P P <td>62 144 144 146 175 73 73 73 175 175 175 175 175 175 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 174 175 173 174 175 174 175 174 175 175 175 175 175 175 175 175 175 175 175 175</td>	62 144 144 146 175 73 73 73 175 175 175 175 175 175 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 173 174 175 173 174 175 174 175 174 175 175 175 175 175 175 175 175 175 175 175 175
1770 0.3 ND 3 1960 0.5 ND 4 1960 0.5 ND 4 1180 0.2 ND 4 1180 0.2 ND 4 1370 0.2 ND 6 1370 0.2 ND 6 1370 0.2 ND 6 1370 0.2 ND 6 2100 0.3 ND 6 2100 0.3 ND 6 2050 0.2 ND 6 2055 0.2 ND 5 1930 0.4 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 1620 0.2 ND 5 1620 0.8 ND 5 1620 0.8 ND 2 1620 0.2 ND 3 655		9 9	144 126 149 147 173 174 174 175 </td
1960 0.5 ND 4 1180 0.2 ND 4 692 0.3 ND 4 1370 0.2 ND 6 1370 0.2 ND 6 1370 0.2 ND 6 2100 0.2 ND 6 22050 0.2 ND 6 20550 0.2 ND 6 2050 0.2 ND 6 1930 0.4 ND 5 1930 0.4 ND 5 11620 0.8 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 1620 0.8 ND 2 1620 0.8 ND 2 1620 0.8 ND 3 655 0.7 ND 3 855 0.5 ND 3	154 78 78 78 78 78 14 139 165 165 165 165 121 123 124 121 121 123 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 13 13 13 13 13 14 12 13 14 12 13 14 12 13 14 12		126 149 73 73 175 175 202 202 173 80 80 127 128 129 127 128 127 128 80 127 128 138 149 118 118 118 118 118 118 138 67 85 79
1180 0.2 ND 4 692 0.3 ND 4 1370 0.2 ND 6 1370 0.2 ND 6 1890 0.2 ND 6 1890 0.2 ND 6 1890 0.2 ND 6 2100 0.3 ND 6 2050 0.2 ND 6 1930 0.4 ND 5 1930 0.4 ND 5 1620 0.8 ND 5 724 0.3 ND 2 724 0.3 ND 2 679 0.2 ND 3 855 0.5 ND 3	78 78 14 14 139 139 158 158 158 158 121 121 123 124 124 121 128 28 133 26 134 121 128 133 139 26 131 28 131 28 132 26 133 26 133 26 142 133 12 133 13 26 13 26 13 26 142 133 12 133 133 134 143 134 144 134 145 144 145 144 145 145 146 145		149 73 73 73 175 202 202 175 175 173 80 169 127 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 85 85 79
692 0.3 ND 4 1370 0.2 ND 6 1890 0.2 ND 6 1890 0.2 ND 6 2100 0.3 ND 6 2100 0.3 ND 6 2100 0.3 ND 6 2050 0.3 ND 6 1930 0.4 ND 5 1930 0.4 ND 5 1620 0.8 ND 5 724 0.3 ND 5 724 0.3 ND 2 679 0.2 ND 2 679 0.2 ND 3 855 0.5 ND 3	14 92 92 139 164 158 158 158 121 121 121 121 133 26 134 121 138 28 28 28 133 26 13 13 13 13 13 13 13 13 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14		73 73 175 175 202 202 173 80 173 173 80 173 159 171 67 67 67 73 85 73
1370 0.2 ND 6 1890 0.2 ND 5 2100 0.3 ND 6 2100 0.3 ND 6 767 0.2 ND 6 7050 0.3 ND 6 1930 0.4 ND 5 1930 0.4 ND 5 1620 0.8 ND 5 724 0.3 ND 5 724 0.3 ND 2 457 0.3 ND 2 679 0.2 ND 3 855 0.5 ND 3	92 139 54 158 158 158 158 121 121 121 121 13 126 61 11 12 126 13 126 13 126 13 126 126 13 127 126 127 127 128 128 128 128 128 128 128 128 128 128		175 202 202 173 173 80 159 159 159 171 118 118 118 118 118 118 118 118 17 17 85 79
1890 0.2 ND 5 2100 0.3 ND 6 767 0.2 ND 6 700 0.2 ND 6 2050 0.2 ND 6 1930 0.4 ND 5 1930 0.4 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 724 0.3 ND 5 724 0.3 ND 2 457 0.2 ND 2 679 0.2 ND 3 655 0.5 ND 3	139 164 164 158 158 158 121 121 121 121 13 13 28 28 28 28 13 13 13 13 13 13 13 13 13 13 13 13 14 12 13 14 12 13 14 15 16 11		202 173 80 159 159 127 118 47 47 67 67 44 71 85 73
2100 0.3 ND 6 767 0.2 ND 2 2050 0.2 ND 6 2055 0.2 ND 6 1930 0.4 ND 5 11620 0.8 ND 5 541 0.2 ND 5 724 0.3 ND 2 724 0.3 ND 2 645 0.3 ND 2 659 0.3 ND 3 655 0.5 ND 3	164 54 54 158 158 165 185 121 123 28 28 28 28 28 28 28 13 13 61 61 12 12 13 26 13 13 13 13 11 12 11		173 80 80 159 127 128 127 128 127 128 127 128 127 128 129 127 118
767 0.2 ND 2 2050 0.2 ND 6 1930 0.4 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 1620 0.8 ND 5 <			80 159 127 127 47 47 67 67 44 71 71 85 73
2050 0.2 ND 6 1930 0.4 ND 5 1620 0.8 ND 5 541 0.2 ND 5 724 0.3 ND 2 724 0.3 ND 2 457 0.3 ND 2 679 0.2 ND ND 679 0.2 ND 3 855 0.5 ND 3	158 165 165 121 123 24 23 26 27 28 28 28 28 13 26 26 13 61 61 12 12 12 26 12 12 12 12 12 11		159 127 127 118 47 67 67 71 71 85 79
1930 0.4 ND 5 1620 0.8 ND 5 541 0.2 ND 5 724 0.3 ND 2 457 0.2 ND 2 679 0.2 ND 3 655 0.5 ND 3 855 0.5 ND 3			127 118 47 67 67 44 71 85 85
1620 0.8 ND 5 541 0.2 ND ND 7 724 0.3 ND 2 16 457 0.2 ND 2 1 679 0.2 ND 3 3 855 0.5 ND 3 3			118 47 67 44 71 71 85 85
541 0.2 ND ND 724 0.3 ND 2 457 0.2 ND ND 679 0.2 ND 3 855 0.5 ND 3		Q Q Q Q Q Q	47 67 44 71 85 79
724 0.3 ND 2 457 0.2 ND ND 679 0.2 ND 3 855 0.5 ND 3		88888	67 44 71 85 79
457 0.2 ND ND 679 0.2 ND 3 855 0.5 ND 3			44 71 85 79
679 0.2 ND 3 855 0.5 ND 3		Q Q Q	71 85 79
855 0.5 ND 3		Q Q	85 79
		QN	79
ND 745 0.2 ND 2 18	54 11 20		
932 0.5 ND 3	11 20	9	72
ND 641 0.2 ND 3 18	20	IJ	
506 0.2 ND	2 2	ΠD	54
ND 868 0.3 ND 5 36	16		73
504 03 ND 2	200	Z	2.69
0.3 ND 2	13	2	180 51 ND
1900	156	Q	178
0.3 ND 4	68 N	ND	86
1380 0.2 ND 6		QN	81
ND 987 0.2 ND 5 20	50 N	Q	44
1160 0.2 ND 5		Q	105
1890 0.3	112 N	Q	189
066	33	Q	72
838 0.2 ND		QN	62
755 0.3 ND 3	15 N	Q	67
1470 0.2 ND	85	QN	114
1110 0.2 ND 5	53	ND	

Table D-1 General Minerals (cont.)

Date
0.6
0.4
0.3
0.7
11/11/2021 0.4 290 11/9/2021 0.3 360
0.2
11/12/2021 0.3 3
11/12/2021 13.4 360
11/12/2021 0.8 240
9/14/2021 0.5 25
9/14/2021 0.4 260
0.6
9/14/2021 0.6 360
11/10/2021 ND 27
DN
ND
11/10/2021 ND 320
11/10/2021 ND 270
11/10/2021 0.6 29
QN
Q
ND
11/10/2021 ND 38
11/10/2021 ND 350
10/21/2021 0.5 300
11/18/2021 0.5 340
11/15/2021 0.7 25
11/18/2021 0.4 28
0.5
0.6
11/18/2021 0.5 28(

Table D-1 General Minerals (cont.)	eral Minerals	(cont.)																	
GW Basin/Subbasin	NMS	Date	В	HCO ₃ -	Са	CO ₃ ²⁻	Ċ	Cu	ЕC	Ĺ.	Fe	K	lg N	_	NO ³⁻ N	la SO₄²-			Ηd
	01N21W21K03S	11/5/2021	0.4	250	65	ND	57	ND	1040	0.2				60 N			0690		8.3
	01N21W22C01S	11/18/2021	0.3	260	73	ND	65		967	0.2									7.4
	01N21W28H03S	11/5/2021	0.6	350	80	ND	160												8.0
	01N21W29B03S	12/1/2021	0.5	290	131	ND	108		1480	0.3 1	ND	4 4	48 86		0.2 1	113 322			7.1
	01N21W33A01S	11/5/2021	0.4	290	153	ND	221		_										8.4
	01N22W06B01S	11/15/2021	1	300	194	ND	80												6.9
	01N22W06R02S	11/5/2021	0.9	270	198	ND	73		_										8.3
	01N22W12Q03S	11/16/2021	0.7	240	132	DN	52			0.6 1									7.0
	01N22W23R02S	12/1/2021	0.6	240	119	ND	43												7.2
	01N22W24C03S	12/1/2021	0.6	230	123	ND	42												7.1
	01N22W24M03S	12/1/2021	0.6	240	181	ND	240												7.0
	01N22W25K01S	12/1/2021	0.6	230	530	ND	1230												7.1
	01N22W25K02S	12/1/2021	0.6	250	93	ND	38												7.5
	01N22W26K03S	12/1/2021	0.4	250	103	ND	43		_										7.4
Oxnard	01N22W26M03S	12/1/2021	0.4	250	115	ND	43		_										7.6
	01N22W26P02S	12/1/2021	0.4	250	77	ND	40		_										7.5
	01N22W26R04S	11/15/2021	0.7	240	160	ND	149		_										7.2
	01N22W36B02S	11/15/2021	0.6	310	100	ND	114		_										7.4
	02N21W20Q05S	10/20/2021	0.6	290	114	ND	73		_										7.4
	02N21W30A02S	10/20/2021	0.5	240	118	ND	55		_		DN								7.4
	02N22W19J03S	11/15/2021	0.7	260	143	ND	53		_		DN								6.9
	02N22W19P01S	11/15/2021	0.6	280	205	ND	85		_		DN								6.8
	02N22W24P01S	10/20/2021	0.6	240	141	ND	51		_		DN	4 5							7.1
	02N22W24P02S	10/20/2021	0.6	240	142	QN	50		_		QN		_						7.2
	02N22W30F03S	11/5/2021	0.7	250	135	QN	47				Q	_	_						8.2
	02N22W31B01S	11/5/2021	0.8	240	151	ND	55		-		DN								8.2
	02N22W31D02S	11/5/2021	0.8	250	144	ND	51			0.6 1	ND								8.4
	02N22W32C04S	11/5/2021	0.8	260	154	ND	59				DN								8.4
	02N23W25M01S	11/15/2021	0.6	260	139	ND	54				Q								7.1
						(00	-		0	(-	-	-	-	-	-	-	I
	04N18W30004S	9/14/2021	C.U	097	CΩ	ND	90	-		_	ND	5	_	-	_	_	-	_	1.4
	04N19W25H01S	9/8/2021	0.7	350	241	Q	142	-			QN							_	7.2
Diru	04N19W/25M03S	9/8/2021	0.9	450	319	QN	73				QN					-			7.1
5	04N19W26H01S	9/14/2021	0.6	300	149	ND	103	Q	1680	0.7	QN	5 5	57 N	ND 24	24.2 13	131 41	419 1230	ON ND	7.3
	04N19W26J03S	9/14/2021	0.5	260	108	ND	106	_		_	QN						_	_	7.5
	04N19W34J04S	9/8/2021	0.6	240	126	DN	57	_		_	QN	_		_				_	7.4

2021 Annual Report of Groundwater Conditions

Table D-1 General Minerals (cont.)	al Minerals (c	cont.)																
GW Basin/Subbasin	NMS	Date	В	HCO ³⁻	Ca	CO3 ²⁻	Ċ	Cu	ECF	ц Ч	Fe K	Mg	g Mn	 NO ₃ - Na	a SO4 ²⁻	2- TDS	NZ	Hd
	01N21W01D08S	11/16/2021	DN	360	87	QN	192	Q	1690 0	0.2 N	DN DN	09	0 20	ND 162	32 197	1120	Q	7.0
	01N21W01M02S	11/16/2021	0.3	370	99	QN	149	DN	1490 0	0.2 N	9 QN	09) 40	 ND 137	37 204	940	QN	7.3
	01N21W02H04S	11/16/2021	0.8	340	292	Q	183	Q	2940 0	0.2 N	ND 5	83	3 10	112 270	0 717	2200	Q	6.8
	01N21W02J01S	11/16/2021	1.7	390	496	QN	422	Q	5490 N	ND N	ND 8	137	7 ND	239 532	32 1720	0 4710	Q	6.8
	01N21W03K01S	11/18/2021	0.6	330	126	ND	188	ND	1870 0	0.3 N	ND 6	38	3 ND	25.7 194	94 371	1190	ND	7.1
	01N21W03R01S	11/18/2021	0.7	310	261	DN	191	Q	2450 0	0.2 N	ND 6	84	4 20	31.5 206	6 587	1820	QN	6.9
	01N21W04K01S	11/18/2021	0.4	290	93	QN	96	QN	1360 0	0.3 N	ND 5	28	3 50	ND 151	1 238	870	Q	7.3
	01N21W04R02S	11/16/2021	0.3	240	115	Q	78	QN	1220 0	0.3 N	ND 3	32	2 110	18.7 87	7 248	820	Q	7.2
	01N21W10A02S	11/16/2021	0.5	280	321	QN	204	Q	2960 0	0.2 N	ND 4	89	9 1180	83.2 163	33 962	2400	20	6.9
rieasani vaney	01N21W10G01S	11/18/2021	0.6	310	100	Q	147	Q	1490 0	0.2 N	Z DN	45	5 40	 1.2 159	59 22 6	950	Q	7.3
	01N21W12D01S	12/1/2021	0.7	370	244	QN	325	Q	3420 N	ND N	ND 5	117	7 90	ND 246	608 91	2460	QN	7.0
	01N21W15D02S	11/18/2021	0.5	260	209	QN	160	Q	2000 0	0.2 N	ND 5	68	3 170	 5.2 157	57 474	1400	Q	7.0
	01N21W15H01S	11/5/2021	2.2	160	456	Q	550	Q	5540 N	9 DN	680 8	180	0 2010	 ND 643	3 1850	0 4620	Q	8.1
	02N20W19L05S	12/7/2021	0.7	270	200	QN	120	Q	2100 0	0.2 N	ND 5	61	1 190	1.5 201	11 586	1560	Q	7.6
	02N20W29B02S	10/4/2021	0.2	350	67	QN	122	Q	1270 0	0.3 N	ND 3	51	1 30	5.7 104		780	Q	7.2
	02N21W33R02S	12/2/2021	0.2	250	79	Q	61	Q	1030 0	0.3 N	ND 4	24	d ND	 0.2 87	7 207	. 670	Q	7.6
	02N21W34C01S	12/2/2021	0.3	270	77	QN	83	QN	1190 0	0.3 3	30 5	29	DN 6	0.2 103	3 279	2770	QN	7.4
	02N21W34G01S	11/18/2021	0.8	370	91	ND	169	ND	1860 0	0.3 N	ND 7	30) 20	 ND 244	4 261	1180	ND	7.3
	02N22W03E01S	9/22/2021	0.5	380	289	QN	100	Q	2580 0	0.4 N	ND 5	76	5 440	 1.4 17	176 939	2190	Q	7.0
	02N22W03K02S	9/22/2021	0.5	360	161	DN	71	QN	1570 0	0.3 N	ND 5	40	DN (5.2 13	133 412	1130	QN	7.3
	03N21W09K04S	9/13/2021	0.4	290	140	ND	45	ND	1310 0	0.4 N	ND 4	31	1 400	 ND 107	358	940	ND	7.4
Conto Doulo	03N21W17Q01S	9/13/2021	0.6	380	207	ND	82	DN	2050 0	0.5 N	ND 4	60	08 0	20 153	3 626	1570	ND	7.0
oalita Faula	03N21W21E11S	9/13/2021	0.7	340	200	ND	109	ND	1940 0	0.5 N	ND 5	56	320	 ND 160	568 568	1440	ND	7.1
	03N21W30F01S	9/13/2021	0.6	400	224	ND	91	ND	2280 0	0.4 N	ND 4	54	4 210	 1.5 13	135 729	1770	20	7.1
	03N22W35Q01S	9/22/2021	0.9	440	318	ND	104	DN	3110 0	0.4 5	50 6	87	7 690	38 271	1 1230	0 2630	ND	7.2
	03N22W36K07S	9/22/2021	0.4	330	237	ND	77	ND	1820 0	0.4 N	ND 4	54	4 160	 0.7 93	3 614	1440	ND	7.3
	02N18W08D04S	11/10/2021	1.1	380	202	ND	165	DN	2310 0	0.4 N	ND 6	69	9 220	 18.7 189	39 766	1720	ND	7.3
Simi Walley	02N18W08K07S	11/10/2021	1	310	273	DN	160	Q	2600 0	0.4 N	ND 5	78	8 ND	56.7 180	80 972	2070	QN	7.1
	02N18W09E01S	11/10/2021	0.9	300	206	ND				0.5 N	ND 5							7.1
	02N18W10A02S	12/7/2021	1.1	320	244	ND	126	Q	2440 0	0.5	ND 6	87	Z ND	60.8 191	1 721	1930	Q	7.2

2021 Annual Report of Groundwater Conditions

Table D-1 General Minerals (cont.)	ral Minerals (c	cont.)																		
GW Basin/Subbasin	SWN	Date	В	HCO ₃ -	Ca	CO3 ²⁻	CI-	Cu	ЕC	Ĺ	Fe	K Mg		Mn N(NO ³⁻ N	Na SO4 ²⁻		TDS	ZN F	РН
	02N19W10R02S	11/9/2021	ΔN	260	52	ΠD	76	DN	963	0.3 1	Q	2 55		QN	9 6	61 17	174 6	680 1		7.1
	02N19W11J03S	11/19/2021	0.2	250	63	QN	58	QN	1030	0.2	QN	1 47		ND 22	22.4 5	52 147		200	30 7	7.1
	02N19W14F01S	12/1/2021	0.1	360	83	ΠD	108	DN	1270	0.2	DN	1 72		ND 64	64.2 4	48 13	134 8	810 1	9 QN	6.8
Tierra Rejada	02N19W14Q02S	11/19/2021	QN	320	80	QN	50	QN	1110	0.6	QN	7 45		620 N	Z DN	76 20	203 7	720 1		7.3
	02N19W15B01S	11/9/2021	QN	290	47	QN	81	QN	967	0.2	Q	2 57	DN VD		3 6	63 15	152 6	640 1		7.5
	02N19W15J02S	11/9/2021	0.2	410	95	ΠD	176	DN	1840	0.2	DN	4 96		ND 34	34.4 12	121 33	334 12	1250	20 7	7.1
	02N19W15N03S	10/4/2021	QN	270	64	QN	80	QN	978	0.2	30	2 56		0 ND	0.9 4	48 16	164 7	1 002		7.3
	04N22W10K05S	10/19/2021	0.4	480	167	QN	122	QN	1540	0.4	QN	1 41	•	11.	6	103 19	66	970 1		7.4
Upper Ojai Valley	04N22W11J01S	10/14/2021	ΔN	200	72	ΠD	38	ΠD	720	0.4	DN	1 25		ND 53	53.4 3	37 90	90.8 4	450 1	9 QN	6.6
	04N22W11P02S	10/14/2021	ΔN	230	38	ΠD	14	DN	433 1	ND	30	1 12		320 N	ND 4	46 3		240 1		7.5
	02N23W05F01S	9/15/2021	0.6	490	72	ND	60	ND	1240	0.2	DN	7 24		70 N	ND 2(209 15	56 7	1 062	ND 7	7.8
Ventura River – Lower	02N23W05K01S	9/15/2021	0.7	380	132	ND	115	ND	1570	0.6	ND	8 40		140 N	ND 1	147 321		1030 1		7.2
	03N23W32Q08S	9/15/2021	0.8	380	214	ND	305	ND	2570	0.4	ND	8 67		270 N	ND 2(207 585		1860 1		7.3
	04N23W09G03S	1202/11/6	0.4	380	135	ΠD	06	ΠD	1250	0.3	QN	2 38		ND 37	37.7 6	62 19	95 8	810 1	2 DN	7.1
Ventura River – Upper	04N23W15A02S	9/17/2021	0.4	200	49	ND	109	ND	998	0.8	ND	1 13		70 13	13.2 13	131 14	149 5	580 1		7.0
	04N23W33M02S (Outside Basin)	9/17/2021	0.6	490	166	DN	144	Q	1870	0.3	QN	4 58		ND	ND 1	113 382	·	1350 1	ND 1	7.2
Gillibrand/Tapo	03N18W24C07S	11/10/2021	ND	290	157	ND	28	ND	1170	0.2	ND	3 33		ND 1(10.8 4	46 36	362 8	850 1		7.3
																				ĺ

2021 Annual Report of Groundwater Conditions

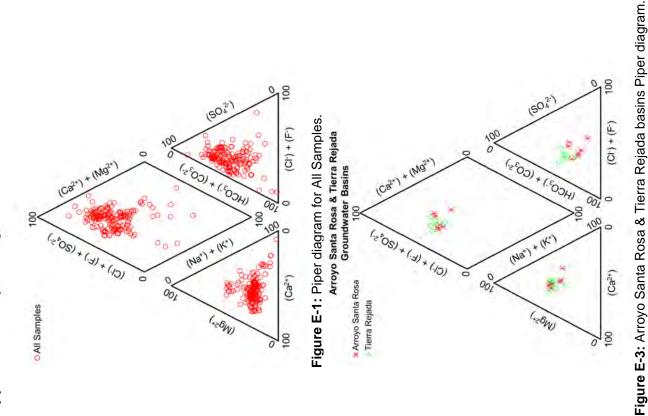
Metals Table D	-2		
Element Name	Element Symbol	Reported Units	Laboratory Analytical Method
Aluminum	Al	µg/l	EPA 200.8
Antimony	Sb	µg/l	EPA 200.8
Arsenic	As	µg/l	EPA 200.8
Barium	Ва	µg/l	EPA 200.8
Beryllium	Be	µg/l	EPA 200.8
Cadmium	Cd	µg/l	EPA 200.8
Chromium	Cr	µg/l	EPA 200.8
Lead	Pb	µg/l	EPA 200.8
Mercury	Hg	µg/l	EPA 245.1
Nickel	Ni	µg/l	EPA 200.8
Selenium	Se	µg/l	EPA 200.8
Silver	Ag	µg/l	EPA 200.8
Thallium	ТІ	µg/l	EPA 200.8
Vanadium	V	µg/l	EPA 200.8

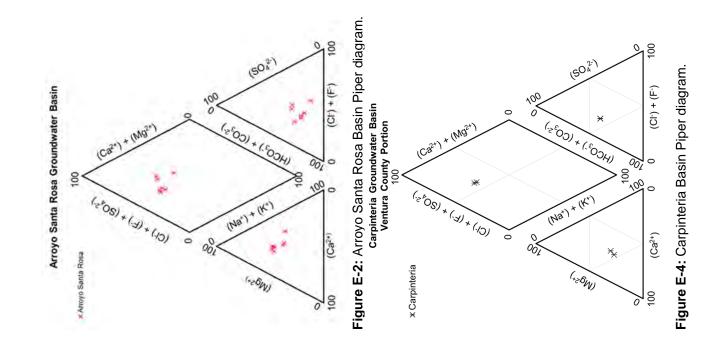
California Title 22 Metals

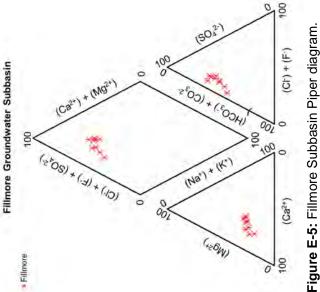
Radio Chemistry

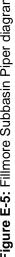
Radio Chemistry Tab	le D-3		
Name	Element Symbol	Reported Units	Laboratory Analytical Method
Gross Alpha		pCi/l	EPA 900.0
Uranium	U	pCi/l	EPA 908.0

I able D-2 Metals							ĺ			-			-		
GW Basin/Subbasin	SWN	Date	A	Sb	As	Ba	Be	Cd	۲ ۲	Pb H	_	N N	Se Ag		>
Arrovo Santa Rosa Vallev	02N19W19P02S	10/4/2021	9	Q	QN	16	Q	Q				~	~	_	53
	02N20W23G03S	11/18/2021	QN	ND	4	35	Q	DN	19 N	NDN	DN	5	8 ND	DN 0	70
Carpinteria	04N25W35G01S	10/21/2021	Q	QN	QN	26	Q	QN	N ND	N N	ND ND	1 1	17 ND	DN 0	Q
Conejo	01N19W08G02S	9/23/2021	DN	DN	DN	17	QN	DN	N DN	N DN	DN	2	3 ND	DN 0	DN
Cuddy Ranch Area	08N20W04N02S	11/12/2021	QN	ΔN	-	132	Q	QN	14 0.	0.6 N	DN	5	1 ND	DN 0	9
Cuyama Valley	08N24W17G02S	11/12/2021	Q	QN	2	15	Q	QN	15 N	N N	N DN	DN	2 ND	DN O	5
		1000/0/0	4		2	ç	4	-	-	╞	╞	\vdash	┢	-	4
	03N21W01P08S 04N19W19N01S	9/8/2021 9/8/2021	a a	nn ND	n n	29 12			_	_		3 3 3	13 NU 20 ND		N N
	04N19W31F01S 04N20W31H04S	9/8/2021 9/9/2021	Q Q	DN DN	1 ND	18 26	Q Q	DN DN	N N DN NDN	N N DN N		5 5	6 ND 3 ND		Q Q
			!		2	1	!	ŀ	-	-	-	ŀ	-	-	-
	01N19W19H03S	9/23/2021	2	ი [10	10						_			2
	01N20W25F04S	10/19/2021	22	n N	n N	113	2 Q	_	_	_		ν ND ν		_	2 Q
									-	-					
	02N19W08H02S	10/21/2021	QN	ND	ND	13	QN		ND N				6 ND		QN
	02N20W03H01S	11/17/2021	QN	ND	2	62	QN	ΔN							5
	02N20W04F01S	11/18/2021	QN	ND	ND	77	QN							_	QN
	02N20W04R03S	10/21/2021	Q	QN	QN	41	Q		_	_		_	_	_	2
	02N20W09Q05S	10/21/2021	Q	Q	ო	25	Q	_	ON ON	_	_		-	-	Q
:	02N20W10D02S	11/22/2021		QN I	- !	56	Q !	_	_		_	+		_	~!
Las Posas Valley – East Las Posas Management Area	02N20W10G01S	10/22/2021				25		+	-	_	_				
	02NZ0W16B06S	10/22/2021			nn,	16			_		+	+		-	Ξ'
	03N19W/28N03S	11/22/2021			ء م	28				_		0 0	a N N N		n Z
	03N20M26H01S	11/17/2021				46		+		-		+		+-	₽ ~
	03N20W34G01S	10/20/2021	2	QN	QN	49	2 Q	Q	2 2 2	-	-	ND ND	-		Q
	03N20W36P01S	11/19/2021	QN	ND	з	61	QN	DN		N ND	DND	2	5 ND	DN 0	12
	O POLODANOCIACO	1000/21/11				57			╞		╞				2
	02N20W00K013	11/9/2021				99				+		2 Z		_	_
	02N20W08F01S	10/21/2021	2	QN	Q	58	Q				-				2
	02N21W08H03S	10/20/2021	Q	QN	-	45	Q	-					-		ო
	02N21W09N01S	10/21/2021	QN	QN	2	42	Q								Q
	02N21W11A03S	10/20/2021	QN	QN	ΔN	41	QN	ΔN				ND	2 ND	DN 0	Q
Las Posas Valley – West Las Posas Management Area	02N21W15M04S	10/21/2021	ND	ND	2	30	ND	ND	-5 ND						DN
	02N21W17F05S	11/9/2021	ND	ND	6	27	ND	ND	16 N						5
	02N21W18H01S	10/21/2021	QN	ND	4	32	QN	ŊD		DND		_	6	_	Q
	02N21W18H14S	10/21/2021	Q	QN N	Q	38	Q			_		~		+	Q
	02N21W28A02S	11/17/2021				25			-			2			1 0
	03NZUW3ZKU1S	1202/6/11			nn,	97 7		+	18 18	+	_	+	+	+	
	0307030500120100	1707/6/11	N	N	-	4/	ND	ND	-	_	_	_	89 NU	_	ND

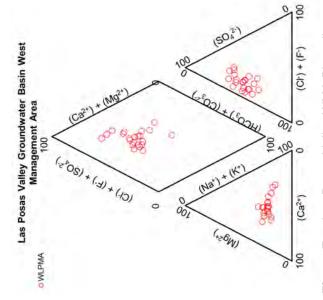

nt.	
8	9
s(
Metals(cont	
D-2	

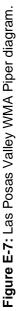

Table D-2 Metals(cont.)															
GW Basin/Subbasin	SWN	Date	A	Sb	As	Ba	Be (cd Cr	r Pb	Hg	ïŻ	Se	Ag	F	>
Mound	02N22W10N04S 02N23W13K03S	9/14/2021 9/14/2021	Q Q	ÐÐ	- 0	17 19				22	≈₽	24 5	QQ	22	a a
	04N22W04P05S	11/10/2021	g	Ð	Q Z			ND 13		22	~ ~	40	Q	22	4 4
Ojai Valley	04N23W12B03S	11/10/2021	Q	2 Q	2	51	-	10 10		_	იო	v 8			n Q
	05N22W33J01S	11/10/2021	Q	QN	QN		ND	ND 19	ON 0	Q	9	~	QN	Q	9
Oxnard – Forebay Management Area	02N21W07P04S	10/21/2021	QN	QN	QN	24	ND	DN DN	DN O	QN	QN	e	QN	QN	QN
			Į	2	c			_	_	_	c	G		Ş	ų
	01N21W04D04S	11/15/2021			7 1-	92 92		ND 11		22	2 0	0			o Q
	01N21W21K03S	11/5/2021	Q	g	Q						- Q	ι η	QN	Q	QN
Oxnard	01N22W12Q03S 01N22W36B02S	11/16/2021 11/15/2021		22	7 7	22 42	_	ND 10 10		22	ი ი	ოდ	Q Q	22	dN 4
	02N22W24P02S 02N22W30F03S	10/20/2021 11/5/2021	Q Q	22							₽~	6 0	99	22	
			2	!	-		-		-		-	I	!		
Dir.	04N19W25H01S	9/8/2021	QN	Q	2	\vdash					9	1	QN	Q	DN
	04N19W34J04S	9/8/2021	Q	Q	Q	18	DN	DN DN	Q	Q		2	Q	Q	Q
	01N21W01M02S	11/16/2021	GN	CN	CN	149	UN CIN	ND 19	CIN 0	Q	~	4	CN	GN	ŝ
	01N21W02J01S	11/16/2021	Q	g	_	-					17	45	Q	Q	5
Pleasant Valley	01N21W15D02S	11/18/2021	QN	Q :							4	11	QN !	Q	Q
	02N20W19L05S	12/7/2021			ოკ	55 15					15 15	47 7			2 v
	020020020020120	1014/07	2		-	-	-	-	_	_	2	J			2
Santa Paula	02N22W03E01S 03N21W17Q01S	9/22/2021 9/13/2021	Q Q	9 9	7 7	28 26		UD ND 0.3 ND		22	ນ ນ	30 30	QQ	22	a a
							-	-	-						
	02N18W08D04S	11/10/2021	Q	Q !	2				_		ى ۲	19	Q	Q	ŊD
Simi Valley	02N18W08K07S	11/10/2021			_	12	-	UN 10	-	-	9 4	65			4
	02N18W10A02S	12/7/2021	ND	Q	v در	+		_		Q	12 4	27 77	ND	Q	12
				!	-	F	-	-	ŀ	-	;		1	!	
Tierra Reiada	02N19W14Q02S	11/19/2021			с с	14		ND 17		22	° 9	۳ س			Q «
	02N19W15N03S	10/4/2021	Q	g	ں ۱		_		_	+	٩	Q	Q	g	9
			<u>(</u>	<u>{</u>	ŀ	ŀ	-	-	-	-	-	0	4	<u>(</u>	(
LInner Diai Vallev	04N22W10K05S 04N22W11.01S	10/19/2021	9 S	22	4 g	103 50					4 Q	- 22	Q Q	22	∞ G
	04N22W11P02S	10/14/2021	g	29							22	Ð	Q	g	Q
Ventura River – Lower Subbasin	02N23W05K01S	9/15/2021	Q	QN	2	22	ND N	ND 13	3 ND	Q	7	4	QN	Q	QN
Ventura River- Upper Subbasin (outside)	04N23W33M02S	9/17/2021	QN	QN	1	74	ND ND	DN DN	DN O	QN	с	4	QN	QN	DN
GilikrandTano	03014810/04/070	11/10/014			-	-				Q	-	63			۵
GIIIIDTATIO/ I APO	U3N10VVZ40010	17/12/12/12	אנ	NL	N	44		14 14			4	63	N	N	x

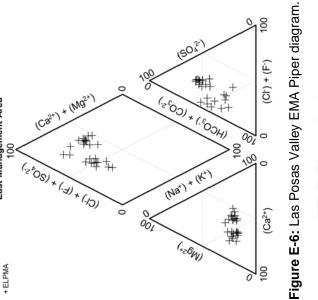

Table D-3 Radiochemistry

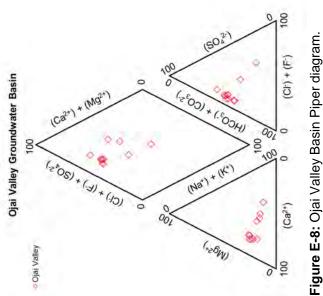

GW Basin	SWN	Date	Alpha pCi/L	CE	Uranium pCi/L	CE
Cuddy Ranch Area	08N21W33R03S	11/12/2021	1.65	1.46		
Lockwood Valley	08N20W04N02S 11/12/2021	11/12/2021	4.06	0.938		

* CE – Counting Error

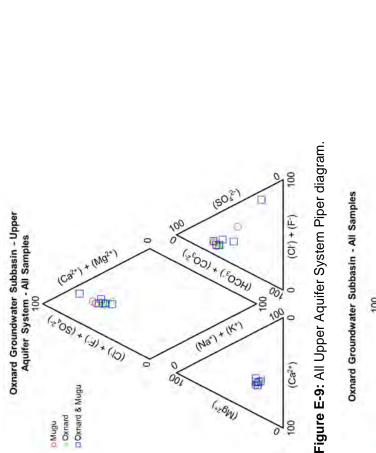


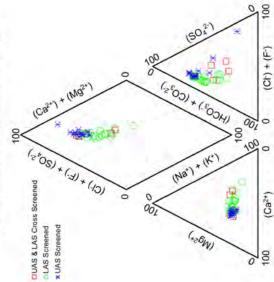






0





Las Posas Valley Groundwater Basin East Management Area

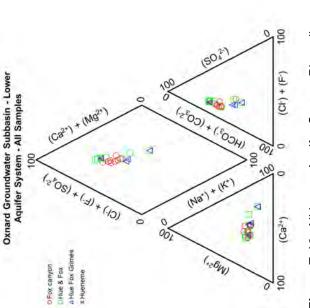


Figure E-10: All Lower Aquifer System Piper diagram.

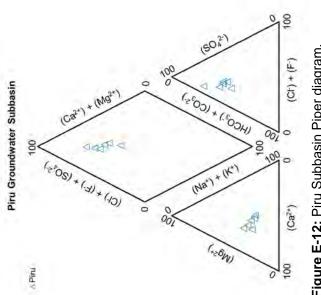


Figure E-12: Piru Subbasin Piper diagram.

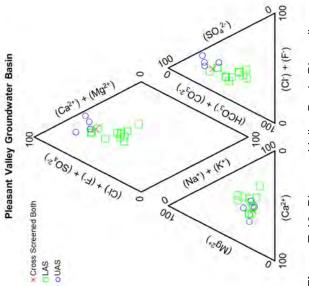
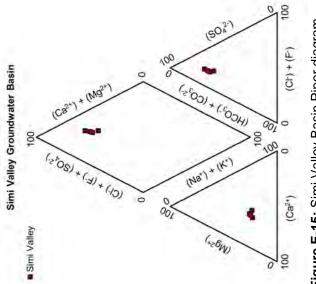
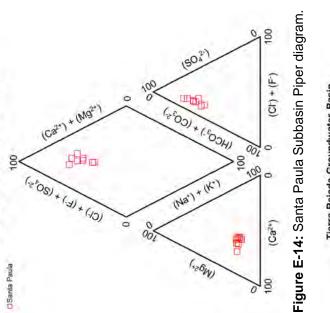
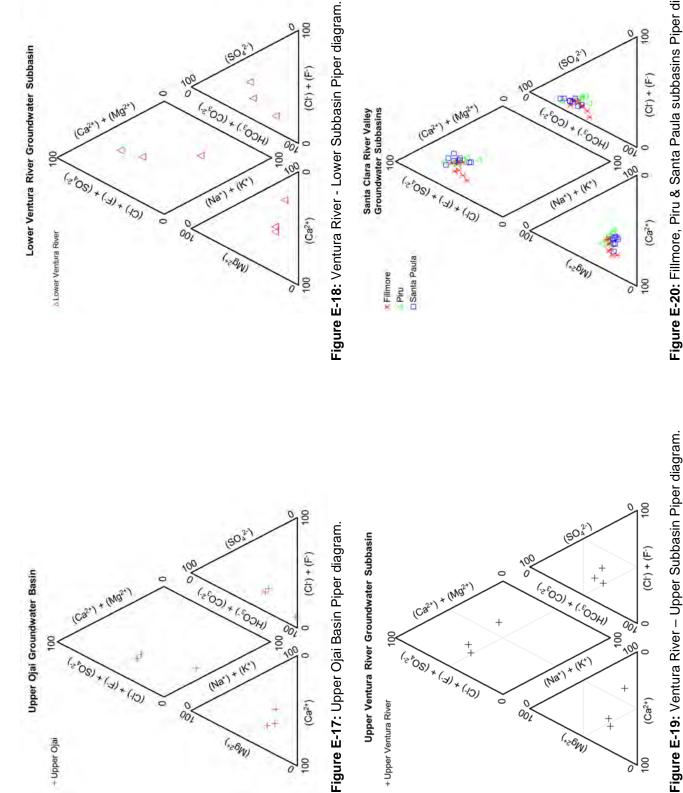
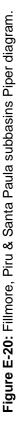
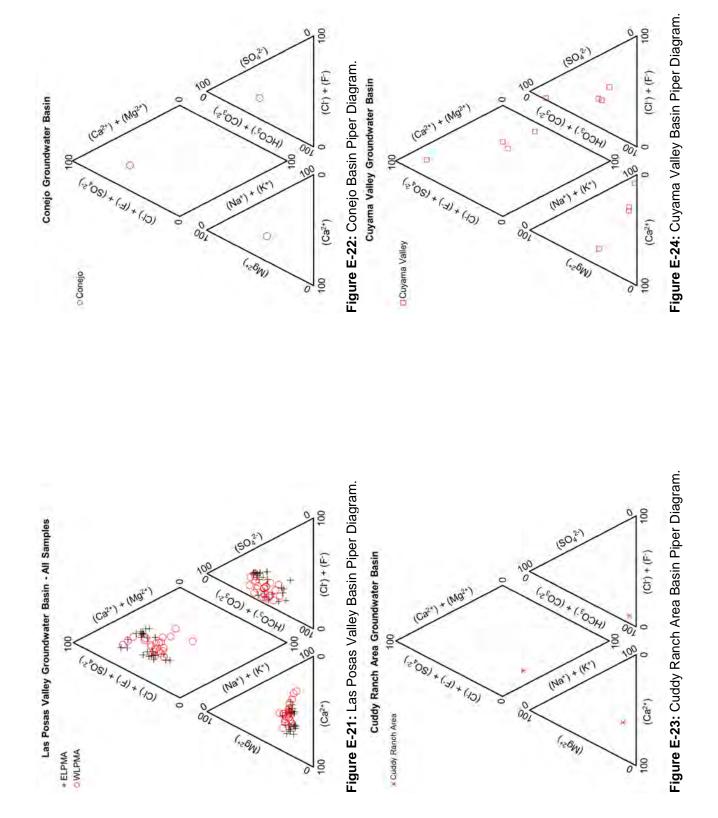


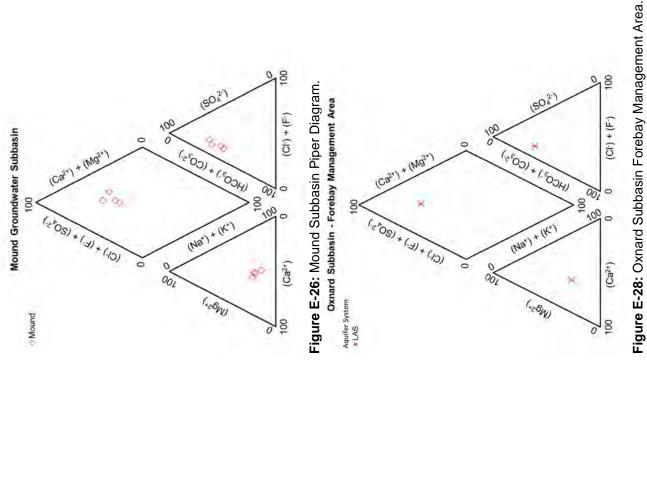
Figure E-13: Pleasant Valley Basin Piper diagram.

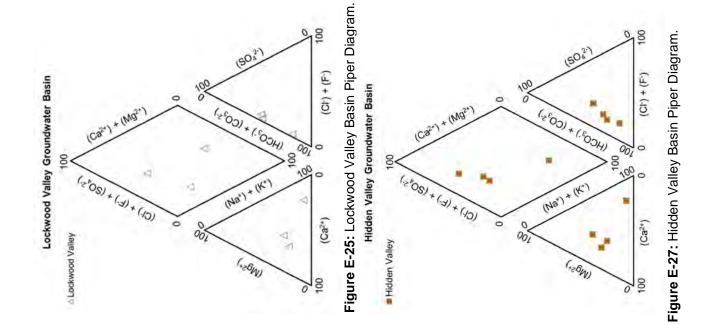




Figure E-15: Simi Valley Basin Piper diagram.




0 100 (502 (CI) + (F) 100 Tierra Rejada Groundwater Basin 0 (2603) * (CO35) + (M92* 1Ca2 001 10 8 200 100 (CI) * (E) * (80⁴5) 0 (Na*) + (K*) 001 (Ca2+) õ 20 o.Tierra Rejada (+20m) 100 õ


Figure E-16 Tierra Rejada Valley Basin Piper diagram.


Santa Paula Groundwater Subbasin



168

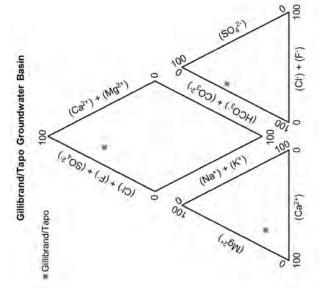


Figure E-29: Gillibrand/Tapo Basin Piper Diagram.

Appendix F - Basin Summary Sheets

The following basin summary sheets provide an overview of data, trends, and facts for groundwater basins in the County designated as high and medium priority in June of 2014 by the California Statewide Groundwater Elevation Monitoring (CASGEM) Program. Trends for groundwater levels and groundwater quality were determined over the last five years for 2021. Trend analysis used sample sets with wells that were sampled or measured consistently over the five year period where available. In some instances this resulted in a small sample set. The spatial distribution of wells may not cover the entire groundwater basin. Data from VCWPD and other agencies was also used in the trend analysis.

Arroyo Santa Rosa Basin

Alloyo Salila Rosa Dasili			
Groundwater Basin Surface Area	3,270 acres		
Irrigated Acreages	≈1,755 (estimate determined from Ve	ntura County Ag Commissioner's data)	
Watershed	Calleguas Creek		
Aquifers	Unconfined and confined aquifers		
DWR Groundwater Basin Designation and Size	Arroyo Santa Rosa Valley Basin (4-7). Surface area 3,747 acres. (DWR, 2014)		
SGMA Basin Priority			
DWR Groundwater Basin Population	2,434 (2010)		
Known Water Supply Wells (as of May 2022)	2021 Self Reported Groundwater	Water Demand Estimate (Whole basin)	
Number of Wells: 85	Extraction to FCGMA (as of May	Irrigation Demand @ 2 AF/Ac:3,510 AF/Yr	
	11, 2022) (West part of basin only)		
Active: 37		Municipal Demand @ 0.5 AF/person/Yr: 1,105	
Destroyed: 32	Agricultural Extractions - 667.5 AF/Yr	AF/Yr	
Abandoned: 6	Municipal, Industrial and Domestic -	Total Demand Estimate: 4,615 AF/Yr	
Can't Locate: 10	0 AF/Yr	,	
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in 0	General for All Wells Sampled by County	
"Key" well 02N20W26B03S - December level was down 7.83 feet from the		(7 wells)	
March measurement.	Six water samples are magnesium bi	icarbonate type and one is sodium chloride type.	
In general, for 3 wells measured spring & fall in 2021 in the basin, water levels declined in all 3 wells over the course of the year from the 1st quarter reading to the last quarter reading.	Primary MCL Exceedances for Nitrate Secondary MCL Exceedances for Chi Secondary MCL Exceedances for TD Secondary MCL Exceedances for Sul	loride >250mg/L? No S >500mg/L? Yes, 7 wells	
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021		
"Key" well 02N20W26B03S: 🖊	SWN Nitrate 02N19W19P02S ↓	Chloride TDS Sulfate	
In general for 4 wells consistently measured: (3 wells) 🖊 (1 well) 👚	02N20W23G03S		
	Wells are generally in the southern ce	entral part of the basin.	
Sources of Groundwater Recharge		nection to Other Groundwater Basins	
Basin Recharge: Infiltration of precipitation. Subsurface flow from Tierra Rejada basin. Surface flow percolation from Arroyo Santa Rosa and Conejo Creek. Waste water returns from residential onsite septic systems. (MWH, 2013)	Upgradient: Arroyo Santa Rosa basin Rejada basin. (MWH, 2013) Downgradient: No	receive some subsurface inflow from Tierra	
Potable Water Sources			
Groundwater from Arroyo Santa Rosa Basin. Imported State Water Project water from Metropolitan Water District via Calleguas Municipal Water District. <u>Non-Potable Water Source</u> Reclaimed water from Hill Canyon Waste Water Treatment Plant via Conejo Creek.			
	r Basin Prioritization Level - Mediun		
Impact Comments: Some primary and second	idary morganic contaminants above the	Ξ IVICL (D-1 Iδ).	
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend		I Trending down	

Cuyama Valley Basin

Groundwater Basin Surface Area:	16,560 acres		
Irrigated Acreage:	≈1,410 (estimate determined from Ventura County Ag Commissioner's data)		
Watershed:	Cuyama River		
Aquifers:	Unconfined Aquifer		
DWR Groundwater Basin Designation and Size:	Cuyama Valley (3-13) Surface area 242,114 Acres. (DWR, 2014)		
SGMA Basin Priority:			
DWR Groundwater Basin Population:	-		
Known Water Supply Wells (as of May 2022)	Water Demand Estimate		
Number of Wells: 140	Irrigation Demand @ 2 AF/Ac: 2,820 AF/Yr		
Active: 102			
Destroyed: 6	Municipal Demand @ 0.5 AF/person/Yr: 618 AF/Yr		
Abandoned: 8	Total Demand Estimate: 3,438 AF/Yr		
Non-Complaiant: 6			
Can't Locate: 18			
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in General for All Wells Sampled by County		
Note: Wells are measured twice per year in the Cuyama Valley basin.	(3 wells)		
	The water in one sample is calcium sulfate type; the water in one sample is sodium		
"Key" well 07N23W16R01S - Well was dry at the fall measurement.	chloride type and the water in two samples is sodium bicarbonate type.		
	Primary MCL Exceedances for Nitrate >45mg/l? No		
Both spring and fall measurements were obtained on 4 wells in the basin in	Secondary MCL Excedances for Chloride >250mg/l? Yes, 1 well		
2021. The water level decreased in 2 wells and increased in 2 wells from the	Secondary MCL Excedances for TDS >500mg/l? Yes, 3 wells		
spring measurement to the fall measurement.	Secondary MCL Excedances for Sulfate >250mg/l? Yes, 1 well		
<u>5 Year Groundwater Level Trend 2017 - 2021</u>	5 Year Groundwater Quality Trend 2017-2021		
5 Teal Groundwater Level Mend 2017 - 2021	SWN Nitrate Chloride TDS Sulfate		
"Key" well 07N23W16R01S: 1			
	09N23W30E05S 🕇 🕇 🔶		
In general for 4 wells consistently measured: 2 wells			
	08N24W17G02S		
	Wells are in the northern portion of the basin.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: Infiltration of precipitation. Seepage from the Cuyama River.	Within Ventura County: None		
(DWR, 2006)			
Potable Water Sources			
Groundwater from Cuyama Valley groundwater basin.			
	Basin Prioritization Level - Medium		
Impact Comments:Local salinity	and TDS impairments in basin (B-118)		
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up Level Trending down		

Fillmore Subbasin

Groundwater Basin Surface Area:	22 583 acres				
		a datarminad fra	m Vantura Count		or'o data)
		≈12,230 acres (estimate determined from Ventura County Ag Commissioner's data) Santa Clara River			ers uala)
	Unconfined Aquifer				
			0.500		
DWR Groundwater Basin Designation and Size:	Santa Clara River Valley Basin, Fillmore Subbasin (4-4.05). Surface area 22,583 acres		2,583 acres.		
	(DWR, 2006)				
SGMA Basin Priority:					
DWR Groundwater Basin Population: Known Water Supply Wells (as of May 2022)	2021 Self Reported	Creating distants of I	Tutroction to LIVA	CD (as of Fahru	amy 25, 2022)
Number of Wells: 611	2021 Self Reported	Groundwater	Extraction to UW	CD (as of Febru	ary 25, 2022)
Active: 447		Agricultural E	xtractions: 22,357	7 AF/Yr	
Destroyed: 78					
Abandoned: 29	M	unicipal & Indust	trial Extractions: 1	,320 AF/Yr	
Can't Locate: 51					
Non-Compliant: 6		Total Extra	actions: 23,677 Al	F/Yr	
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwa	ater Quality in O	General for All W	ells Sampled by	County
"Key" well 03N20W05D01S - December level was down 10.75 feet from the			(9 wells)		
March measurement.	One water sample is			e remaining eight	samples are
			um sulfate type.		
	Primary MCL Exceedan			Yes, 3 wells	
In general, for 11 wells measured in the basin in 2021, water levels declined in				No	
all 11 wells over the course of the year from the 1st quarter reading to the last	Secondary MCL Exceed			Yes, 9 wells	
quarter. 5 Year Groundwater Level Trend 2017 - 2021	Secondary MCL Exceed		ž	Yes, 8 wells	
5 fear Groundwater Level Trend 2017 - 2021	<u>5 Y</u>		ter Quality Tren	<u>d 2017-2021</u>	
		(*sam	npled by UWCD)		
	SWN	Nitrate	Chloride	TDS	Sulfate
"Key" well 03N20W05D01S: 1	04N20W36P04S	-	1		\rightarrow
	03N21W01P08S			1	-
	04N19W31F01S				, i
The 5 year trend based on 2016 through 2020 groundwater level elevations is	04N19W30D01S*	-	-		¥
upward.					_
	04N20W33C03S*		T	T	
	Wells are distributed thr	roughout the bas	sin.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins			asins	
Basin Recharge: Infiltration of precipitation. Subsurface flow from Piru basin.	Upgradient: Yes, Piru groundwater basin.				
Surface flow percolation from Santa Clara River, Sespe Creek, and minor	Downgradient: Yes, Sar	nta Paula ground	dwater basin.		
tributaries. (DWR, 2006) Imported State Water Project water via Lake Piru					
release to Santa Clara River.	<u> </u>				
DWR CASGEM Groundwater					mont indianta
Impact Comments: Many groundwater quality impairments in the basin; Nitrate	es problematic during dry ized and being managed	perioas; High II	DS, etc. (B-118).	KEH - PUDIIC COM	iment indicated
	6 6	A			
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up ⁴		rending down 🦊		

Las Posas Valley Basin East Management Area

Las Posas Valley Basin East Management Are		
Management Area Name	: East Las Posas Management Area	
ELPMA Surface Area	: 27,180 acres	
Irrigated Acreage	≈10,000 acres (estimate determined from Ventura County Ag Commissioner's data)	
Watershed	: Calleguas Creek	
Aquifers	Unconfined and confined aquifers	
DWR Groundwater Basin Designation and Size	Los Posas Valley Basin (4-8). Surface area 42,353 acres. Note: DWR groups three County basins into Las Posas Valley Basin (4-8) (DWR, 2014)	
SGMA Basin Priority	: High	
DWR Groundwater Basin Population	: 42,721 (2010)	
Known Water Supply Wells (as of May 2022)	2021 Self Reported Groundwater Extraction to FCGMA (as of May 18, 2022)	
Number of Wells: 403	Agricultural Extractional 17 400 AEA/r	
Active: 165	Agricultural Extractions: 17,498 AF/Yr	
Destroyed: 143 Abandoned: 37	Municipal, Industrial, and Domestic Extractions: 1,596 AF/Yr	
Can't Locate: 54 Exempt: 1	Values are approximate based on FCGMA East and South Las Posas basins.	
Non-Compliant: 3	Total: 19,094 AF/Yr	
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in General for All Wells Sampled by County	
"Key" well 03N20W26R03S - Level was down 14.6 feet in December from the	(25 wells)	
March measurement.	The water in 8 wells is calcium bicarbonate type, calcium sulfate type in 10 wells,	
	sodium bicarbonate type in 1 well, and sodium sulfate type in 6 wells.	
	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 3 wells	
In general, for 11 wells measured for the 1st and 4th guarters in 2021 in the	Secondary MCL Exceedances for Chloride >250mg/L?No	
basin, water levels declined in all 10 wells and rose in 1 well over the course of	Secondary MCL Exceedances for TDS >500mg/L? Yes, 18 wells	
the year.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 13 wells	
5 Year Groundwater Level Trend 2017 - 2021		
	5 Year Groundwater Quality Trend 2017-2021	
"Key" well 03N20W26R03S: 1	SWN Nitrate Chloride TDS Sulfate 02N20W04B01S Image: Chloride Image: Chloride Image: Chloride Image: Chloride	
The E year trend based on 2017 through 2024 groundwater level elevation	02N20W16B06S 🛉 📫 📕	
The 5 year trend based on 2017 through 2021 groundwater level elevation maps varies.	03N19W29K08S 🔿	
iliaus valies.	03N19W29K06S 4 4 1	
Of the 13 measured wells in the basin 10 show a downward trend and 3 of the wells show a rising trend.	One well is located in the southwest, one well in the midwest, and two wells are located in the northeast.	
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins	
Basin Recharge: Infiltration of precipitation, minor stream flow across outcrops	West:Possible connection to West Las Posas basin in NW part of basin.	
of the Fox Canyon and Grimes Canyon gravels, and percolation from flow in		
the Arroyo Las Posas. (DWR, 2006) Imported State Water Project water via	South/Southeast: South Las Posas Basin.	
injection in the Calleguas Municipal Water District ASR well field.		
Potable Water Sources	Southwest: Restrictive subsurface structure between Pleasant Valley basin and East	
Groundwater from East Las Posas basin. Imported State Project Water from Calleguas MWD to various purveyors.	Las Posas basin may cause spillover from East Las Posas to Pleasant Valley when basin is full.	
	er Basin Prioritization Level - High	
	Comment includes reports of subsidence, overdraft and saline intrusion	
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up Level Trending down	

Las Posas Valley Basin West Management Area

Las Posas Valley Basin West Management Are			
-	West Las Posas Management Area (WLPMA)		
WLPMA Surface Area:			
Irrigated Acreage:	: ≈9,950 (estimate determined from Ventura County Ag Commissioner's data)		
	Calleguas Creek		
Aquifers	Unconfined and confined aquifers		
DWR Groundwater Basin Designation and Size:	Los Posas Valley Basin (4-8). Surface area 42,353 acres. Note: DWR groups three		
-	County basins into Las Posas Valley Basin (4-8) (DWR, 2014)		
SGMA Basin Priority:	High		
DWR Groundwater Basin Population:	42,721 (2010)		
Known Water Supply Wells (as of May 2022)	2021 Self Reported Groundwater Extraction to FCGMA (as of May 18, 2022)		
Number of Wells: 164	Agricultural Extractions: 10,642 AF/Yr		
Active: 89			
Destroyed: 60	Municipal, Industrial, and Domestic Extractions: 1,673 AF/Yr		
Abandoned: 9			
Can't Locate: 5 Non-Compliant: 1	Values are approximate based on FCGMA West Las Posas basin.		
Non-Compliant. 1			
	Total: 12,315 AF/Yr		
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in General for All Wells Sampled by County		
	(23 wells)		
	The water in nine wells is calcium bicarbonate type, three are sodium bicarbonate		
"Key" well 02N21W11J04S - Level was down 5.4 feet in December from the	type, four are sodium sulfate type, and eight are calcium sulfate type.		
March measurement.	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 4 wells		
In general, for 14 wells consistently measured in 2021 in the basin, water levels Secondary MCL Exceedances for Chloride >250mg/L? No			
declined in all 14 wells over the course of the year from the 1st quarter reading Secondary MCL Exceedances for TDS >500mg/L? Yes, 19 wells			
to the last quarter reading.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 12 wells		
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021		
	SWN Nitrate Chloride TDS Sulfate		
"Key" well 02N21W11J04S: 🦊			
	02N21W17F05S		
For 19 wells measured, the E year trend based on 2017 through 2021			
For 18 wells measured, the 5 year trend based on 2017 through 2021 groundwater level elevationis is mixed with 14 wells declining and 4 wells			
showing an increasing water level elevation trend.	02N21W13A01S 🔿 🄿 🕇 🕇		
	Wells are in various locations in the basin.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: Infiltration of precipitation, minor stream flow across outcrops	East: Possible connection to East Las Posas basin in NW part of basin.		
of the Fox Canyon and Grimes Canyon gravels, and percolation from flow in			
the Arroyo Las Posas. (DWR, 2006)	Southwest: Yes, Oxnard Plain Pressure basin.		
Potable Water Sources			
Groundwater from West Las Posas basin. State Water Project water from			
Calleguas MWD to various water purveyors.	ar Paoin Prioritization Loval High		
	er Basin Prioritization Level - High Comment includes reports of subsidence, overdraft and saline intrusion		
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up Level Trending down		

Mound Subbasin					
Irrigated Acreage	≈2,075 acres (estimate	determined f	rom Ventura Coun	ty Ag Commiss	ioner's data)
Watershed	Santa Clara River				
Aquifers	Unconfined and confine	d aquifers			
DWR Groundwater Basin Designation and Size	Santa Clara River Valley Basin, Mound Subbasin (4-4.03) Surface area 13,86 Acres. (DWR, 2014)			ea 13,864	
SGMA Basin Priority					
DWR Groundwater Basin Population	-				
Known Water Supply Wells (as of May 2022)	2021 Self Reported G	roundwater	Extraction to UW	CD (as of Feb	ruary 25, 2022
Number of Wells: 86					
Active: 31	Agricultural Extractions: 1,213 AF/Yr				
Destroyed: 42					
Abandoned: 5	Mun	icipal & Indus	strial Extractions: 1	,071 AF/Yr	
Can't Locate: 7					
Non-Compliant: 1		Total Ex	ractions: 2,284 AF	/Yr	
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwate	r Quality in	General for All W	ells Sampled	ov County
			(4 wells)		<u>,</u>
			(4 weils)		
"Key" well 02N22W07M02S (measured by UWCD) - November level was up 5.9 feet from the January measurement.	Three samples are c	alcium sulfat	e type and one sa	mple is sodium	sulfate type.
	Primary MCL Exceedar	ces for Nitra	e >45mg/L?	No	
	Secondary MCL Excee		5	No	
In general, for 1 well consistently measured in the basin in 2021, water level			e e		
declined from the 1st quarter reading to the last quarter reading.	Secondary MCL Exceedances for TDS >500mg/L? Yes, 4 wells				
	Secondary MCL Excee		× 1		
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021				
"Key" well 02N22W07M02S: 📕	(Based on wells sampled by VCWPD and other agencies)(D=Deep aquifer S=Shallow aquifer)				
	SWN	Nitrate	Chloride	TDS	Sulfate
	02N22W09K07S (D)	\Rightarrow	1	1	
			↑	1	⇒
	02N22W07M03S (S)		↑ ⇒	1 1	⇒ 1
, , , , , , , , , , , , , , , , , , , ,			 ▲ ↓ ↓ 	1 1 1	⇒ 1
	02N22W07M03S (S)		t t t t t t t t t t t t t t t t t t t	1 1 ast to west line.	⇒ ↑ ↓
groundwater level elevations is mixed . <u>Sources of Groundwater Recharge</u>	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u>	e center of the	nnection to Other		Basins
groundwater level elevations is mixed . <u>Sources of Groundwater Recharge</u> <u>Basin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th	e center of the	nnection to Other		Basins
groundwater level elevations is mixed . <u>Sources of Groundwater Recharge</u> <u>Basin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa	e center of the	nnection to Other Iwater basin.	r Groundwate	
groundwater level elevations is mixed . <u>Sources of Groundwater Recharge</u> <u>Basin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa East/Southeast: Yes, O	e center of the drologic Con Paula ground xnard Plain F	Innection to Other Iwater basin. Forebay and Oxnar	r Groundwate d Plain Pressu	
<u>Sources of Groundwater Recharge</u> <u>Sasin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa	e center of the drologic Con Paula ground xnard Plain F	Innection to Other Iwater basin. Forebay and Oxnar	r Groundwate d Plain Pressu	
groundwater level elevations is mixed . <u>Sources of Groundwater Recharge</u> <u>Basin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa East/Southeast: Yes, O	e center of the drologic Con Paula ground xnard Plain F	Innection to Other Iwater basin. Forebay and Oxnar	r Groundwate d Plain Pressu	
groundwater level elevations is mixed . <u>Sources of Groundwater Recharge</u> <u>Basin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u>	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa East/Southeast: Yes, O	e center of the drologic Con Paula ground xnard Plain F	Innection to Other Iwater basin. Forebay and Oxnar	r Groundwate d Plain Pressu	
groundwater level elevations is mixed . <u>Sources of Groundwater Recharge</u> <u>Basin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u> Groundwater from Mound Basin, Ventura River Basin, Oxnard Plain Pressure	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa East/Southeast: Yes, O	e center of the drologic Con Paula ground xnard Plain F	Innection to Other Iwater basin. Forebay and Oxnar	r Groundwate d Plain Pressu	
Basin Recharge: Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u> Groundwater from Mound Basin, Ventura River Basin, Oxnard Plain Pressure Basin via Ventura Water System. Surface water from Ventura River diversion	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa East/Southeast: Yes, O	e center of the drologic Con Paula ground xnard Plain F	Innection to Other Iwater basin. Forebay and Oxnar	r Groundwate d Plain Pressu	
groundwater level elevations is mixed . <u>Sources of Groundwater Recharge</u> <u>Basin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u> Groundwater from Mound Basin, Ventura River Basin, Oxnard Plain Pressure Basin via Ventura Water System. Surface water from Ventura River diversion via Ventura Water System. Surface water from Lake Casitas via Casitas	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa East/Southeast: Yes, O	e center of the drologic Con Paula ground xnard Plain F	Innection to Other Iwater basin. Forebay and Oxnar	r Groundwate d Plain Pressu	
Sources of Groundwater Recharge Sain Recharge: Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River. Potable Water Sources Groundwater from Mound Basin, Ventura River Basin, Oxnard Plain Pressure Basin via Ventura Water System. Surface water from Ventura River diversion via Ventura Water System. Surface water from Lake Casitas via Casitas	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa East/Southeast: Yes, O	e center of the drologic Con Paula ground xnard Plain F	Innection to Other Iwater basin. Forebay and Oxnar	r Groundwate d Plain Pressu	
<u>Sources of Groundwater Recharge</u> <u>Basin Recharge</u> : Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of direct precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u> Groundwater from Mound Basin, Ventura River Basin, Oxnard Plain Pressure Basin via Ventura Water System. Surface water from Ventura River diversion	02N22W07M03S (S) 02N22W09L04S (S) Wells are generally in th <u>Subsurface Hy</u> Upgradient: Yes, Santa East/Southeast: Yes, O basins. Flow into and or	e center of the drologic Con Paula ground xnard Plain F ut of basin de vel - Mediun	nection to Other dwater basin. Forebay and Oxnar pendent on ground	r Groundwate d Plain Pressu	

Ojai Valley Basin			
Groundwater Basin Surface Area:	6,851 Acres (DWR, 2014)		
Irrigated Acreage:	≈2,135 (estimate determined from Ver	ntura County Ag Commissioner's data)	
	Ventura River		
Aquifers:	Unconfined and confined aquifers		
DWR Groundwater Basin Designation:	•		
SGMA Basin Priority:			
DWR Groundwater Basin Population:	7,745 (2010)		
Known Water Supply Wells (as of May 2022)	2021 Self Reported Groundwater	Water Demand Estimate	
Number of Wells: 327	Extractions to OBGMA		
Active: 191	(as of February 25, 2022)	Irrigation Demand @ 2 AF/Ac:4,270 AF/Yr	
Destroyed: 76		-	
Abandoned: 11	Extractions: 3,481 Af/Yr	Municipal Demand @ 0.5AF/person/Yr: 4,134	
Can't Locate: 48		AF/Yr	
Non Compliant: 1		Total Demand Estimate: 8,404 AF/Yr	
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in G	General for All Wells Sampled by County	
		(11 wells)	
"Key" well 04N22W05L08S: - The December reading was down 8.4 feet from		carbonate type, four wells are calcium sulfate	
the March level.		nate type, and one is calcium chloride type.	
	Primary MCL Exceedances for Nitrate		
In general, for 16 wells consistently measured in 2021 in the basin, water levels			
declined in 15 wells and rose in 1 well over the course of the year from the 1st	Secondary MCL Exceedances for TD		
quarter reading to the last quarter reading.	Secondary MCL Exceedances for Sul	fate >250mg/L? Yes, 2 wells	
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021		
	SWN Nitrate	Chloride TDS Sulfate	
"Key" well 04N22W05L08S: 🔶	04N23W01K02S		
	05N22W33J01S	\mathbf{A} \mathbf{A}	
_	04N22W04Q01S		
In general, for 17 wells consistently measured: (13 wells) 👕 (4 wells) 🖊	04N23W12B03S 🛛 🔿	T T T	
	Wells are located in various areas of t	he basin.	
Sources of Groundwater Recharge	Subsurface Hydrologic Con	nection to Other Groundwater Basins	
Basin Recharge:infiltration of precipitation on the valley floor, and percolation of	Upgradient: No		
surface waters through alluvial channels. (DWR, 2006)			
	Downgradient: No. The basin is draine	ed by Thacher and San Antonio Creeks to the	
	Ventura River. (DWR, 2006)		
Potable Water Sources			
Groundwater from Ojai Valley Basin. Surface water from Lake Casitas via			
Casitas Municipal Water District to various water purveyors.			
DWR CASGEM Groundwater	Basin Prioritization Level - Medium		
Impact Comments: High nitrates and sulfates reported in	the basin. Medium to high levels of nitr	rates reported in the basin	
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up Level	Trending down 📕	
or our and a county from house from to to all of the food from a			

Oxnard Subbasin

DWD Occur durates Design Design at the set of	Carte Clara Diver Valley Davia Overand Sykhopia (4.4.00) Systems area 57.040		
DWK Groundwater Basin Designation and Size	Santa Clara River Valley Basin, Oxnard Subbasin (4-4.02) Surface area 57,642 Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR 2014)		
Irrigated Acreage	≈21,540 (estimate determined from Ventura County Ag Commissioner's data)		
Watershed	Santa Clara River and Calleguas Creek		
Aquifers	Unconfined and confined aquifers		
SGMA Basin Priority			
DWR Groundwater Basin Population			
Known Water Supply Wells (as of May 2022)	2021 Self Reported Groundwater Extraction to FCGMA (as of May 18, 2022)		
Number of Wells: 1,184	Agricultural Extractions: 43,494 AF/Yr		
Active: 462			
Destroyed: 545			
Abandoned: 74	Municipal, Industrial, and Domestic Extractions: 28,391 AF/Yr		
Exempted: 1			
Can't Locate: 98			
Non-Compliant: 4	Total: 71,885 AF/Yr		
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in General for All Wells Sampled by County		
UAS "Key" well 01N21W07H01S - December level was down 4.30 feet from	(36 wells)		
the March measurement.	Une The sector is the UAO is here to be a first one end in the sector of the term		
	UAS - The water in the UAS is best classified as a calcium sulfate type.		
LAS "Key" well 01N21W32K01S - November level was down 27.4 feet from the	LAS - Three water samples are sodium sulfate type, five samples are sodium		
January measurement.	bicarbonate type, and the remainder are calcium sulfate type.		
	Primary MCL Exceedances for Nitrate >45mg/L? No		
	Secondary MCL Exceedances for Chloride >250mg/UYes, 1 well		
In general, for 24 wells consistently measured in 2021 in the basin, water levels			
declined in 22 wells and rose in 2 wells over the course of the year from the 1s	t Secondary MCL Exceedances for Sulfate >250mg/L?Yes, 27 wells		
quarter reading to the last quarter reading.			
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021		
UAS "Key" well 01N21W07H01S: 1	Upper System SWN Nitrate Chloride TDS Sulfate 01N22W06B01S Image: Chloride Image: Chloride		
LAS "Key" well 01N21W32K01S: 1			
Upper System	Lower System		
The 5 year trend based on 2017 through 2021 groundwater level elevations is	SWN Nitrate Chloride TDS Sulfate		
mostly upward with only one well trending downward.	01N21W08R01S 📫 🕇 📕		
	01N21W04D04S 🔿 🛉 🖡		
l auron Comtam			
Lower System			
The 5 year trend based on 2017 through 2021 groundwater level elevations is	01N22W26M03S 🕂 1		
mostly upward with only two wells trending downward.	02N21W20Q05S 📫 🕇 🕇 🖊		
	02N22W24P02S 🕇 🔿 🕇 📕		
	For upper system, both wells are in the northwest. For lower system the wells are		
	generally in the center of the basin along a northeast to southwest line, and a small		
	group in the southeast.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge:percolation of surface flow from the Santa Clara River, into the	North: Oxnard Forebay basin, Mound basin		
Oxnard Forebay; precipitation and floodwater from the Calleguas Creek			
drainage percolate into the unconfined gravels near Mugu Lagoon. Some	East/Northeast: Pleasant Valley basin, West Las Posas basin		
underflow may come from the Las Posas and Pleasant Valley Basins on the	במסעראטרמוכמסו. ד ובמסמות אמוובץ שמסוון, אילטן במט ד USdo שמסוון		
east. Flow into and out of Mound basin dependent on water levels. (DWR,			
2006). Imported State Water Project water via Lake Piru release to Santa Clara			
Divor			
Potable Water Sources			
Groundwater from Oxnard Plain Pressure Basin via various purveyors.			
Groundwater from Oxnard Forebay basin via United Water system. Surface			
Groundwater from Oxnard Forebay basin via United Water system. Surface water from Santa Clara River via United Water System. Imported State Water			
Groundwater from Oxnard Forebay basin via United Water system. Surface			
Groundwater from Oxnard Forebay basin via United Water system. Surface water from Santa Clara River via United Water System. Imported State Water Project water from Calleguas MWD to various water purveyors. <u>DWR CASGEM Groundwate</u>	e r Basin Prioritization Level - High des, and PCBs have impacted some water wells per (B-118)		

Oxnard Subbasin Forebay Management Area

Manaegment Area Name			
Forebay Management Area Surface Area			
Irrigated Acreage	≈1,797 (estimate determined from Ventura County Ag Commissioner's data)		
Watershed	Santa Clara River		
Aquifers	Unconfined and confined		
DWR Groundwater Basin Designation and Size	Santa Clara River Valley Basin, Oxnard Subbasin (4-4.02) Surface area 57,642		
•	Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR		
	2014)		
SGMA Basin Priority	,		
DWR Groundwater Basin Population			
Known Water Supply Wells (as of May 2022)	2021 Self Reported Groundwater Extraction to FCGMA (as of May 18, 2022		
Number of Wells: 283	Agricultural Extractions: 5,743 AF/Yr		
Active: 102	Agricultural Extractions. 5,743 AF/11		
Destroyed: 137	Municipal, Industrial, and Domestic Extractions: 10,773 AF/Yr		
Abandoned: 16	Municipal, industrial, and Domostic Extractions. 10,773 Ar / 11		
Can't Locate: 27			
Non-Compliant: 1	Total: 16,516 AF/yr		
2021 Groundwater Levels in General for Wells Gauged by County and	2021 Groundwater Quality in General for All Wells Sampled by County		
UWCD	(1 well)		
"Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD.Well was dry all of 2021.	All samples are calcium sulfate type.		
	Primary MCL Exceedances for Nitrate >45mg/l? No		
	Secondary MCL Excedances for Chloride >250mg/l? No		
	Secondary MCL Excedances for TDS >500mg/l? Yes, 1 well		
	Secondary MCL Excedances for Sulfate >250mg/l? Yes, 1 well		
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021		
	Upper System (Includes wells sampled by other agencies)		
"Key" well 02N22W12R04S: 🖊	SWN Nitrate Chloride TDS Sulfate		
Upper System			
The 5 year trend based on 2017 through 2021 groundwater level elevations is mixed with 5 wells \P and 3 wells \P .	02N22W11J01S 🕇 🔿 🔿		
Lower System	Lower System		
The 5 year trend based on 2017 through 2021 groundwater level elevations is	SWN Nitrate Chloride TDS Sulfate		
upward with all 6 wells increasing.	02N22W13N02S 🔿 🕇 🛉 📕		
	02N22W23H04S 📥 着 👗		
	02N22W23H04S		
	02N22W26B03S 🛋 🛉		
Sources of Groundwater Pacharge	02N22W26B03S \Rightarrow		
Sources of Groundwater Recharge	02N22W26B03S Wells are located in the southeast portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: percolation of surface flow from the Santa Clara River and,	02N22W26B03S Wells are located in the southeast portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Santa Paula groundwater basin to the northwest and Oxnard Plain		
Basin Recharge: percolation of surface flow from the Santa Clara River and, some subsurface flow from Santa Paula Subbasin makes its way over or	02N22W26B03S Wells are located in the southeast portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: percolation of surface flow from the Santa Clara River and, some subsurface flow from Santa Paula Subbasin makes its way over or across the Oak Ridge fault. Some amount of irrigation return also occurs	02N22W26B03S Wells are located in the southeast portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Santa Paula groundwater basin to the northwest and Oxnard Plain		
Basin Recharge: percolation of surface flow from the Santa Clara River and, some subsurface flow from Santa Paula Subbasin makes its way over or	02N22W26B03S Wells are located in the southeast portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Santa Paula groundwater basin to the northwest and Oxnard Plain groundwater basin to the east and south.		
Basin Recharge: percolation of surface flow from the Santa Clara River and, some subsurface flow from Santa Paula Subbasin makes its way over or across the Oak Ridge fault. Some amount of irrigation return also occurs (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River.	02N22W26B03S Wells are located in the southeast portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Santa Paula groundwater basin to the northwest and Oxnard Plain groundwater basin to the east and south. Downgradient: Yes, Mound groundwater basin to the southwest. Oxnard Plain		
Basin Recharge: percolation of surface flow from the Santa Clara River and, some subsurface flow from Santa Paula Subbasin makes its way over or across the Oak Ridge fault. Some amount of irrigation return also occurs (DWR, 2006) Imported State Project Water via Lake Piru release to Santa	02N22W26B03S Wells are located in the southeast portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Santa Paula groundwater basin to the northwest and Oxnard Plain groundwater basin to the east and south. Downgradient: Yes, Mound groundwater basin to the southwest. Oxnard Plain Pressure groundwater basin to the south and southwest. Flow into and out of Mound		
Basin Recharge: percolation of surface flow from the Santa Clara River and, some subsurface flow from Santa Paula Subbasin makes its way over or across the Oak Ridge fault. Some amount of irrigation return also occurs (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River. Potable Water Sources Groundwater from Oxnard Plain Forebay basin. Surface water from Santa Clara River diversion via United Water Conservation District. Groundwater from Oxnard Plain Pressure basin via Oxnard Water System. Imported State Projec Water from Calleguas MWD via Oxnard Water System.	02N22W26B03S Wells are located in the southeast portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Santa Paula groundwater basin to the northwest and Oxnard Plain groundwater basin to the east and south. Downgradient: Yes, Mound groundwater basin to the southwest. Oxnard Plain Pressure groundwater basin to the south and southwest. Flow into and out of Mound		
Basin Recharge: percolation of surface flow from the Santa Clara River and, some subsurface flow from Santa Paula Subbasin makes its way over or across the Oak Ridge fault. Some amount of irrigation return also occurs (DWR, 2006) Imported State Project Water via Lake Piru release to Santa Clara River. Potable Water Sources Groundwater from Oxnard Plain Forebay basin. Surface water from Santa Clara River diversion via United Water Conservation District. Groundwater from Oxnard Plain Pressure basin via Oxnard Water System. Water from Calleguas MWD via Oxnard Water System. <u>DWR CASGEM Groundwater</u>	02N22W26B03S Image: Constant of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Santa Paula groundwater basin to the northwest and Oxnard Plain groundwater basin to the east and south. Downgradient: Yes, Mound groundwater basin to the southwest. Oxnard Plain Pressure groundwater basin to the south and southwest. Flow into and out of Mound ter Basin Prioritization Level - High ter Basin Prioritization Level - High les, and PCBs have impacted some water wells per (B-118)		

Pleasant Valley Basin

DWR Groundwater Basin Designation and Size:	Pleasant Valley Basin ((4-6). Surface a	area 19,838 acres	. (DWR, 2014)	1
Groundwater Basin Surface Area:	20,267 acres				
Irrigated Acreage:	≈7,980 (estimate determined from Ventura County Ag Commissioner's data)		s data)		
Watershed:	: Calleguas Creek				
Aquifers:	Unconfined and confine	ed aquifers			
SGMA Basin Priority:					
DWR Groundwater Basin Population:					
Known Water Supply Wells (as of May 2022)	2021 Self Reported	Groundwate	r Extraction to F	CGMA (as of I	May 18, 2022)
Number of Wells: 347					
Active: 85		Agricultural E	xtractions: 10,246	AF/11	
Destroyed: 186	Municipal, Industrial, and Domestic Extractions: 3,613 AF/Yr		Nr		
Abandoned: 27	wunicipai,	industrial, and	Domestic Extract	10113. 0,010 AI	/ 11
Can't Locate: 46					
Non-Compliant: 3		Tota	al: 13,859 AF/Yr		
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwat	er Quality in O	General for All W	ells Sampled	by County
			(18 wells)		
'Key" well 01N21W03C01S - December level was down 34.8 feet from the	The water in four san	•		•	m bicarbonate
January measurement.			nder are calcium		
	Primary MCL Exceeda			Yes, 3 wells	
n general, for 12 wells consistently measured in 2021 in the basin, water levels			•		
declined in all 11 wells and rose in 1 well over the course of the year from the	Secondary MCL Excee		•	Yes, 18 wells	
Ist quarter reading to the last quarter reading.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 11 wells 5 Year Groundwater Quality Trend 2017-2021				
5 Year Groundwater Level Trend 2017 - 2021	<u>5 Ye</u>	ear Groundwa	ter Quality Trend	<u>1 2017-2021</u>	
	Upper System				
Key" well 01N21W03C01S: 1	SWN	Nitrate	Chloride	TDS	Sulfate
	01N21W12D01S				
	01N21W10A02S	- A	ī		
Inner Cintem				-	
Jpper System	Lower System				
	SWN	<u>Nitrate</u>	Chloride	TDS	Sulfate
The 5 year trend is up with 1 well increasing and 3 wells declining.	01N21W03K01S		1	1	
Lower System	01N21W03R01S			1	
The 5 year trend is mixed with 3 well declining and 2 wells showing an	01N21W10G01S		4		, i i i i i i i i i i i i i i i i i i i
ncreasing trend.	01N21W15D02S	🔺 🗼	È	<u> </u>	- *
horodoling trond.	02N21W34G01S			- 1	
	021121110340010				
	One well is in the north		· •		
Sources of Groundwater Recharge			nection to Other	Groundwate	r Basins
Basin Recharge: dominantly from subsurface flow across the Springville fault	West: Yes, Oxnard Pla	an Pressure Ba	asın.		
zone. A modest amount of irrigation water and septic system effluent also	Coot: No				
contribute to basin recharge. (DWR, 2006)	East: No.				
Potable Water Sources Groundwater from Pleasant Valley Basin, groundwater from Arroyo Santa Rosa					
basin, groundwater from Preasant valley basin, groundwater from Arroyo Santa Rosa	1				
Calleguas Municipal Water District to various water purveyors.					
DWR CASGEM Groundwate	Racin Prioritization	lovol - Hich			
Impact Comments: PC - Discharge of poor quality GW from dewatering wells			vator troatmost for		rovo Simi ho
Impact Comments: PC - Discharge of poor quality Gvv from dewatering wells led to rising water levels in the basin	•			Sinty into the Ar	ioyo simi nav
	5 5				
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up	o 🚹 Leve	I Trending down	+	

Piru Subbasin

Groundwater Basin Surface Area:	10,896 acres		
Irrigated Acreage:	≈5,600 (estimate determined from Ventura County Ag Commissioner's data)		
. .	Santa Clara River		
	Unconfined Aquifer		
	Santa Clara River Valley Basin, Piru Subbasin (4-4.06). Surface area 10,896 acres.		
DWR Gloundwater Basin Designation and Size.	(DWR, 2014)		
SGMA Basin Priority:			
DWR Groundwater Basin Population:			
Known Water Supply Wells (as of May 2022)	2021 Self Reported Groundwater Extraction to UWCD (as of February 25, 2022)		
Number of Wells: 191	Agricultural Extractions: 5,754 AF/Yr		
Active: 150	Agricultural Extractions. 5,754 AF/11		
Destroyed: 23	Municipal Extractions: 229 AF/Yr		
Abandoned: 4			
Can't Locate: 12	Total Extractions: 5,983 AF/Yr		
Non-Compliant: 2			
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in General for All Wells Sampled by County		
"Key" well 04N19W25C02S - December level was down 18.9 feet from the	(6 wells)		
March measurement.	Piru basin groundwater is mainly calcium sulfate type.		
	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 1 well		
In general, for 4 wells consistently measured in 2021 in the basin, water levels	Secondary MCL Exceedances for Chloride >250mg/L? No		
declined in all 4 wells over the course of the year from the 1st quarter reading	Secondary MCL Exceedances for TDS >500mg/L? Yes, 6 wells		
to the last quarter reading.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 5 wells		
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021		
	(* sampled by UWCD)		
	SWN Nitrate Chloride TDS Sulfate		
"Key" well 04N19W25C02S:	04N18W30J04S 🔿 🖡 🖡		
The 5 year trend based on 2017 through 2021 groundwater level elevations is	04N19W34J04S 04N19W25M03S 04N18W20R01S* 04N18W27B01S* 04N18W27B01S* 04N18W27B01S* 04N18W27B01S* 04N18W27B01S* 04N19W34J04S 04N19W34J04S 04N19W34J04S 04N19W34J04S 04N19W34J04S 04N19W34J04S 04N19W34J04S 04N19W35J04S 04N19W37J04S		
mixed with 6 wells showing an upward trend and 1 well showing a downward	04N19W25M03S 🎔 🏴		
trend.	04N18W20R01S* 🖊 🖊 🖊		
	04N18W27B01S*		
	04N18W20M03S*		
	· · · · · · · · · · · · · · · · · · ·		
	The wells are in the north central portion of the basin.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: Infiltration of precipitation. Subsurface flow from East basin.	Upgradient: Yes, East groundwater basin.		
Surface flow percolation from Santa Clara River, Piru Creek and Hopper Creek.			
(DWR, 2006) Imported State Water Project water via Lake Piru release to	,,		
Santa Clara River and percolation ponds.			
	er Basin Prioritization Level - High		
	tanks, etc. (B-118). High Selenium and other inorganics, average TDS was 1450 mg/l		
(Ventura Co 2	2011 annual gw report)		
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up Level Trending down -		

Santa Paula Subbasin

Primary MCL Exceedances for Nitrate >45mg/.? No In general, for 6 wells measured in 2021 in the basin, water levels declined in 5 wells and did not change in 1 well over the course of the year from the 1st quarter reading. Secondary MCL Exceedances for Chloride >250mg/L? No Secondary MCL Exceedances for Sulfate >250mg/L? No Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells "Key" well 03N21W17Q01S: Image: Sampled by VCWPD and 2 wells sampled by other agencies*) SWN Nitrate Chloride TDS 03N21W17Q01S: Image: Sampled by VCWPD and 2 wells sampled by other agencies*) Image: Sampled by VCWPD and 2 wells sampled by other agencies*) SWN Nitrate Chloride TDS Sulfate </th <th>Croundwater Pagin Surfage Area</th> <th>22 110 00000</th>	Croundwater Pagin Surfage Area	22 110 00000		
Watershel: Santa Clara River DWR Groundwater Basin Designation and Size Santa Clara River Valley Basin, Santa Paula Subbasin (4-4.04) Surface area 22,110 SGMA Basin Priority: Very Low DWR Groundwater Basin Population: 47,755 (2010) Known Water Suppy Wells: 2005 Agricultural Extractions: 0.907 AF/Yr Destroyed: 85 Agricultural Extractions: 9.973 AF/Yr Caral Locate: 49 Total Extractions: 9.973 AF/Yr 2221 Groundwater Locate: 49 Total Extractions: 9.973 AF/Yr 2221 Groundwater Locate: 49 Total Extractions: 9.973 AF/Yr 2221 Groundwater Locate: 49 Total Extractions: 9.973 AF/Yr 2021 Groundwater Lovels in General for All Wells Gauged by County (6 wells) Yrkey' well 03N22W38/050S - December level was down 1.7 feet from the Wells and di not change in 1 well over the course of the year from the 1st quarter reading. Secondary WCL Exceedances for TOLs - 5000mg/L? Yes' well 03N22W38/04X04 Start Glara Nuer Lovel Exceedances for Unicide > 250mg/L? No Secondary WCL Exceedances for Unicide > 250mg/L? No Secondary W		,		
Aquifers Chronithed Aquifer DWR Groundwater Basin Designation and Size SafdA Basin Priority Very Low SGMA Basin Priority Very Low DWR Groundwater Basin Population 77.55 (2010) Number of Weils 2005 Agricultural Extraction to UWCD (as of February 25, 2022) Number of Weils 2005 Agricultural Extractions: 6.987 AF/Yr Destroyed: 16 Agricultural Extractions: 9.973 AF/Yr 2021 Groundwater Levels in General for All Weils Gauged by County (8 weils) Wey woll 03A22W 38h055 - December level was down 1.7 feet from the Weils and di not change in 1 weil over the course of the year from the 1st squarer reading. No Neger and di not change in 1 weil over the course of the year from the 1st squarer reading. No Secondary MCL Exceedances for Nitrate - 345mg/2 No Secondary MCL Exceedances for Songl.7 Yes, 8 weils Secondary MCL Exceedances for Songl.7 No Secondary MCL Exceedances for Songl.7 No Yes, 8 weils Secondary MCL Exceedances for Songl.7 Yes, 8 weils Sec				
DWR Groundwater Basin Designation and Size Safata Clara River Valley Basin, Santa Paula Subbasin (4-4.04) Surface area 22,110 Acres. (DWR, 2014) Marce Surgers (DWR, 2014) Way Low 47,755 (2010) Known Water Supply Weils (as of Max, 2022) Agricultural Extractions (6,987 AF/Yr Number of Weils: 295 Agricultural Extractions : 9,987 AF/Yr Active: 150 Agricultural Extractions : 9,987 AF/Yr Destroyed: 85 Municipal & Industrial Extractions : 9,987 AF/Yr Adamdoned: 10 Exempted: 1 Can't Locate: 49 Coll Conndwater Quality in General for All Weils Sauged by County "Key" will 03N22W38K0S5 - December level was down 1.7 feet from the March measurement. The water type for all samples is calcium sulfate type. Primary MCL Exceedances for TDS > 500mg(L) Yes, 8 wells Strear Groundwater Level Trend 2017 - 2021 Strear Groundwater Text and the sample is calcium sulfate type. Yrkey' well 03N22W37K0S2 The basin, water level elevel is the sample by CWCWPD and 2 wells sampled by COUNTY Yes, 8 wells 'Key' well 03N21W17Q01S: * Strear Groundwater Level Trend 2017 - 2021 'Key' well 03N22W37K02N3 Strear Res. Distributer Res. Subsurface Hoty Torough 2021 groundwater level elevel and in the southwest portion of the basin and 4 wells are in the northeast end of the basin.				
SGMA Basin Priority: Very Low Acres. (DWR, 2014) Known Water Supply Wells (as of Max, 2022) Number of Wells: 256 Active: 150 Destroyed: 25 Abandoned: 10 Exempted: 1 2021 Self Reported Groundwater Extractions: 6,987 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (Key' well 0X2W38K055 - December level was down 1.7 feet from the Wells and did not change in 1 well over the course of the year from the 1st quarter reading to the last quarter reading. 2021 Groundwater Quality in General for All Wells Sampled by County (B wells) The water type for all samples is calcium sulfate type. Primary MCL Exceedances for Chioride >250mgL? No Secondary MCL Exceedances for Chioride >250mgL? No Secondary MCL Exceedances for Sulfate >250mgL? No Solfate Water Project water Norther Antiper Project Water Project W				
SGMA Basin Priority DWR Groundwater Basin Population Very Low 47,755 (2010) Known Water Supph Weils (as of Max, 2022) Number of Wells: 235 Active: 150 Destroyed: 85 Abandanet: 10 Exempted: 1 Can't Locate: 49 2021 Self Reported Groundwater Extractions to UWCD (as of February 25, 2022) 2021 Groundwater Levels in General for All Wells Sauged by County Key' well 03N22W/36K055 - December level was down 1.7 feet from the March measurement. Total Extractions: 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County Key' well 03N22W/36K055 - December level was down 1.7 feet from the March measurement. 2021 Groundwater Quality in General for All Wells Sampled by County (8 wells) The water type for all samples is calcium sulfate type. Viery Well 03N22W/36K055 - December level was down 1.7 feet from the Warch measurement. Secondary MCL Exceedances for TOInforde > 250mg/L? No No Secondary MCL Exceedances for Sulfate > 45mg/L? quarter reading to the last quarter reading. No No No Secondary MCL Exceedances for Sulfate > 250mg/L? Werk well 03N21W17Q01S: Year Groundwater Level Trend 2017-2021 (Based on 3 wells sampled by VCWPD and 2 wells sampled by other agencies*) Year Groundwater Quality Trend 2017-2021 (Based on 3 wells sampled by VCWPD and 2 wells are in the northeast end of the basin. Subcarter feecharge Werk well 03N21W17Q01S Subsurface Hydrologic Connection to Other Groundwater Basin. Do Subsurface Hydrologic Connection to Other Groundwater Basin. Subsurface H	DWR Groundwater Basin Designation and Size:	Santa Clara River Valley Basin, Santa Paula Subbasin (4-4.04) Surface area 22,110		
DWR Groundwater Basin Population: 47,755 (2010) Know Water Supply Wells (as of May, 2022) Number of Wells: 295 Agricultural Extractions: 6,987 AF/Yr Active: 150 Bestroyet: 85 Abandoned: 10 Exempted: 1 Can't Locate: 49 Total Extractions: 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (8 wells) Yeg' well 03N22W/36K055 - December level was down 1.7 feet from the Total Extractiones is 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (8 wells) Yeg' well 03N22W/36K055 - December level was down 1.7 feet from the The water type for all samples is calcium sulfate type. Primary MCL Exceedances for Choirde > 250mgL? No Secondary MCL Exceedances for Choirde > 250mgL? No Secondary MCL Exceedances for Sulfate > 250mgL? No Secondary MCL Exceedances for Sulfate > 250mgL? Yes, 8 wells Ykey' well 03N21W17001S: Yes a rearoundwater level Trend 2017 - 2021 Secondary MCL Exceedances for Choirde > 250mgL? Yes a wells 'Key' well 03N21W17001S: Sulfate Sulfate Sulfate 'Sulfate Sulfate Sulfate Sulfate 'Sulfate Sulfate Sulfate Sulfate 'Sulfate Sulfate Su				
DWR Groundwater Basin Population: 47,755 (2010) Know Water Supply Wells (as of May, 2022) Number of Wells: 295 Agricultural Extractions: 6,987 AF/Yr Active: 150 Bestroyet: 85 Abandoned: 10 Exempted: 1 Can't Locate: 49 Total Extractions: 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (8 wells) Yeg' well 03N22W/36K055 - December level was down 1.7 feet from the Total Extractiones is 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (8 wells) Yeg' well 03N22W/36K055 - December level was down 1.7 feet from the The water type for all samples is calcium sulfate type. Primary MCL Exceedances for Choirde > 250mgL? No Secondary MCL Exceedances for Choirde > 250mgL? No Secondary MCL Exceedances for Sulfate > 250mgL? No Secondary MCL Exceedances for Sulfate > 250mgL? Yes, 8 wells Ykey' well 03N21W17001S: Yes a rearoundwater level Trend 2017 - 2021 Secondary MCL Exceedances for Choirde > 250mgL? Yes a wells 'Key' well 03N21W17001S: Sulfate Sulfate Sulfate 'Sulfate Sulfate Sulfate Sulfate 'Sulfate Sulfate Sulfate Sulfate 'Sulfate Sulfate Su	SGMA Basin Priority:	Very Low		
Known Water Supply Wells (as of May, 2022) Number of Wells: 296 Active: 150 Destroyed: 85 Abandoned: 10 Exempted: 1 Can't Locate: 49 2021 Self Reported Groundwater Extraction to UWCD (as of February 25, 2022) Agricultural Extractions: 0,987 AF/Yr Agricultural Extractions: 0,987 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (Rey well 03N22W36K05S - December level was down 1.7 feet from the March measurement. 2021 Groundwater Quality in General for All Wells Sampled by County (Rey well 03N22W36K05S - December level was down 1.7 feet from the farch measurement. No Secondary MCL Exceedances for Nitrate >450mg/L? Secondary MCL Exceedances for Choirdie >250mg/L? Secondary MCL Exceedances for Choirdie >250mg/L? No No Stear Groundwater Level Trend 2017 - 2021 Stear Groundwater Level Trend 2017 - 2021 (Basin Recharge: Infiltration of precipitation. Succes of Groundwater Recharge Basin Recharge: Infiltration of precipitation. Subsurface Recharge Goundwater from Santa Clara River, and Santa Paula Creek (DWR, 2006) Inported State Water Project water via Lake Plinu release to Santa Clara River. Potable Water Sources Groundwater from Santa Paula Basin Subsurface Hydrologic Connection to Other Groundwater basin. Downgradient: Yes, Fillmore groundwater b				
Active: 150 Destroyed: 85 Abandoned: 10 Exempted: 1 Can't Locate: 49 Total Extractions: 9.973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County "Key" well 03N22W36K05S - December level was down 1.7 feet from the Warch measurement. Warch measurement. Warch measurement. Ward measurement. Ward neasurement. March unactive to course of the year from the 1st quarter reading. <u>S Year Groundwater Level Trend 2017 - 2021</u> "Key" well 03N21W17Q01S: The 5 year trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. <u>Sourcees of Groundwater Recharge</u> Basin Recharge: Inilitation of precipitation. Subsurface flow from Fillmore basin. <u>Surface flow percolation from Santa Clara River, and Santa Paula Privates to Santa Clara River.</u> <u>Potable Water Sources</u> <u>Groundwater Recharge</u> Groundwater from Santa Clara River, and Santa Paula Creek Guude from Santa Clara River, <u>Potable Water Project water via Lake Piru release to</u> Santa Clara River. <u>Potable Water Sources</u> <u>Groundwater Recharge</u> <u>Groundwater Recharge</u> <u>Groundwater Recharge</u> <u>Groundwater Recharge</u> <u>Groundwater Recharge</u> <u>Groundwater Recharge</u> <u>Basin Recharge Inilitation of precipitation. Subsurface flow from Fillmore basin. <u>Sufface flow percolation from Santa Clara River, and Santa Paula Creek</u> <u>CUWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u> <u>Groundwater from Santa Clara River, and Santa Paula Desin.</u> <u>DWR CASCEM Groundwater Basin Prioritization Level - Medium</u> Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL. TDS is known to be high.</u></u>	Known Water Supply Wells (as of May, 2022)	2021 Self Reported Groundwater Extraction to UWCD (as of February 25, 2022)		
Active: 150 Destroyed: 25 Abandoned: 10 Exempted: 1 Carit Locate: 49 Total Extractions: 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (%ey' well 03N22W36K0SS - December level was down 1.7 feet from the Warch measurement. 1 Negeneral, for 6 wells measured in 2021 in the basin, water levels declined in 5 wells and did not change in 1 well over the course of the year from the 1st quarter reading to the last quarter reading. Secondary MCL Exceedances for Chloride >250mgL? No Secondary MCL Exceedances for Sulfate >250mgL? Ves, 8 wells Secondary MCL Exceedances for Chloride TDS Sulfate Sulfate (Based on 2017 through 2021 groundwat	Number of Wells: 295			
Abandoned: 10 Exempted: 1 Can't Locate: 49 Total Extractions: 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (8 wells) Well X22W 36K05S - December level was down 1.7 feet from the March measurement. 2021 Groundwater Quality in General for All Wells Sampled by County (8 wells) No general, for 6 wells measured in 2021 in the basin, water levels declined in 5 wells and did not change in 1 well over the course of the year from the 1st quarter reading. Secondary MCL Exceedances for TDS >500mg/L? No Stear Groundwater Level Trend 2017-2021 Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells "Key" well 03N21W17Q01S: * Stear Groundwater level elevations is mixed with most wells showing an upward trend. SUMN Nitrate TDS Sulfate Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater basin. Subsurface Hydrologic Connection to Other Groundwater basin. Pagradient: Yes, Fillmore groundwater basin. Sources of Groundwater via Lake Prive release to Santa Clara River. Poleble Water Sources Subsurface Hydrologic Connection to Other Groundwater basin. MURICIPAL Models The Level - Medium Dwn gradient: Yes, Fillmore groundwater basin. Subsurface Hydrologic Connection to Other Groundwater basin. "Key" well 03N21W17Q01S: *	Active: 150	Agricultural Extractions: 6,987 AF/Yr		
Abandoned: 10 Exempted: 1 Can't Locate: 49 Total Extractions: 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (8 wells) Well X22W 36K05S - December level was down 1.7 feet from the March measurement. 2021 Groundwater Quality in General for All Wells Sampled by County (8 wells) No general, for 6 wells measured in 2021 in the basin, water levels declined in 5 wells and did not change in 1 well over the course of the year from the 1st quarter reading. Secondary MCL Exceedances for TDS >500mg/L? No Stear Groundwater Level Trend 2017-2021 Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells "Key" well 03N21W17Q01S: * Stear Groundwater level elevations is mixed with most wells showing an upward trend. SUMN Nitrate TDS Sulfate Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater basin. Subsurface Hydrologic Connection to Other Groundwater basin. Pagradient: Yes, Fillmore groundwater basin. Sources of Groundwater via Lake Prive release to Santa Clara River. Poleble Water Sources Subsurface Hydrologic Connection to Other Groundwater basin. MURICIPAL Models The Level - Medium Dwn gradient: Yes, Fillmore groundwater basin. Subsurface Hydrologic Connection to Other Groundwater basin. "Key" well 03N21W17Q01S: *	Destroyed: 85			
Can't Locate: 49 Total Extractions: 9,973 AF/Yr 2021 Groundwater Levels in General for All Wells Gauged by County (%ey well 03N22W 36K0S5 - December level was down 1.7 feet from the measurement. 2021 Groundwater Quality in General for All Wells Sampled by County (% wells) In general, for 6 wells measured in 2021 in the basin, water levels declined in wells and did not change in 1 well over the course of the year from the 1st quarter reading to the last quarter reading. No 5 Year Groundwater Level Trend 2017 - 2021 Secondary MCL Exceedances for SUlfate >250mg/L? Yes, 8 wells 6 Year Groundwater Level Trend 2017 - 2021 Stear Groundwater Quality Trend 2017-2021 Yes, 8 wells "Key" well 03N21W17Q01S: Stear Groundwater level elevations is mixed with most wells showing an upward trend. Style action of the basin and 4 wells are in the northeast end of the basin. Sources of Groundwater Recharge Basin Recharge: Infiltration of precipitation. Subsurface flow from Fillmore basin. Surface flow percolation for Santa Clara River, and Santa Paula Creek Sources for State Water Project water via Lake Piru release to Santa Clara River. Subsurface Hydrologic Connection to Other Groundwater Basins Ouwgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins OWR. 2008 State Water Project water via Lake Piru release to Santa Clara River. DUR CASEEM Groundwater Basin Prioritization Level - Medium Murate flow and box ow MCL. Other inorganics present above MCL.TDS is known to be high. <th>Abandoned: 10</th> <th>Municipal & Industrial Extractions: 2,986 AF/Yr</th>	Abandoned: 10	Municipal & Industrial Extractions: 2,986 AF/Yr		
2021 Groundwater Levels in General for All Wells Gauged by County "Key" well 03N22W38K055 - December level was down 1.7 feet from the (8 wells) March measurement. (8 wells) In general, for 6 wells measured in 2021 in the basin, water levels declined in 5 Secondary MCL Exceedances for Chloride > 250mg/L? No Secondary MCL Exceedances for Suffate > 250mg/L? No Yes, 8 wells Secondary MCL Exceedances for Suffate > 250mg/L? Yes, 8 wells Secondary MCL Exceedances for Suffate > 250mg/L? Yes, 8 wells Yes, 8 wells Yes, 8 wells Secondary MCL Exceedances for VCP D and 2 wells sampled by other agencies*) "Key" well 03N21W17Q01S: TDS The 5 year trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. SWN Nitrate Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins. One well is in the southwest portion of the basin and 4 wells are in the northeast end of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins. Dubsurface Hydrologic Connection to Other Groundwater Basins. WCW, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. Dubsurface Hydrologic Connection to Other Groundwater basins. OWR, 2006) Imported State Water Project water via Lak	Exempted: 1			
"Key" well 03N22W36K05S - December level was down 1.7 feet from the March measurement. (8 wells) In general, for 6 wells measured in 2021 in the basin, water levels declined in 5 wells and did not change in 1 well over the course of the year from the 1st quarter reading to the last quarter reading. No Secondary MCL Exceedances for Chloride >250mg/L.2] No Yes, 8 wells Secondary MCL Exceedances for Chloride >250mg/L.2] No Yes, 8 wells Secondary MCL Exceedances for Chloride >250mg/L.2] Yes, 8 wells "Key" well 03N21W17Q01S: The 5 year trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. Site 2017 2021 Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basin One well is in the southwest portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins WR 2006 Imported State Water Project water via Lake Piru release to Santa Clara River. Subsurface Hydrologic Connection to Other Groundwater Basins Orandwater from Santa Paula Basin Develoas and Paula Basin Subsurface Hydrologic Connection to the basin. Develoase and River. Downgradient: Yes, Fillmore groundwater basin. Downgradient: Yes, Fillmore groundwater basin. Surface flow percolation form Santa Clara River, and Santa Paula Creek for Suta Paula Creek Groundwater Basin Subsurface Hydrologic Connection to Other Groundwater Basins		Total Extractions: 9,973 AF/Yr		
March measurement. The water type for all samples is calcium sulfate type. Primary MCL Exceedances for Nitrate + 45mgU.? No Wells and did not change in 1 well over the course of the year from the 1str Secondary MCL Exceedances for Choride > 2500mgU.? No Secondary MCL Exceedances for Nutrate > 2500mgU.? No Yes, 8 wells Yes, 8 wells Secondary MCL Exceedances for Sulfate > 2500mgU.? Yes, 8 wells Yes, 8 wells Secondary MCL Exceedances for Sulfate > 2500mgU.? Yes, 8 wells Yes, 8 wells Yes, Yeer Groundwater Level Trend 2017 - 2021 (Based on 3 wells sampled by VCWPD and 2 wells sampled by other agencies*) "Key" well 03N21W17Q01S: The 5 year trend based on 2017 through 2021 groundwater level elevations is SWN Nitrate Choride TDS Sulfate 03N21W17Q01S: The southwest portion of the basin and 4 wells are in the northeast end of the basin. 03N21W160605* TO TO TO Wells are in the northeast end of the basin. 03N21W15G03S* The southwest portion of the basin and 4 wells are in the northeast end of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Fillmore groundwater basin. Upgradient: Yes, Nound and Oxnard Plain Forebay groundwater basins Upgradient: Yes, Nound and Oxnard Plain Forebay groundwater basins	2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in General for All Wells Sampled by County		
Primary MCL Exceedances for Nitrate >45mg/L? No In general, for 6 wells measured in 2021 in the basin, water levels declined in 5 Secondary MCL Exceedances for Nitrate >45mg/L? No wells and did not change in 1 well over the course of the year from the 1st quarter reading to the last quarter reading. Secondary MCL Exceedances for SS00mg/L? Yes, 8 wells Secondary MCL Exceedances for SUIfate >250mg/L? Yes, 8 wells Yes, 8 wells Secondary MCL Exceedances for SUIfate >250mg/L? Yes, 8 wells Wells and id not change in 1 well over the course of the year from the 1st Secondary MCL Exceedances for SUIfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for SUIfate >250mg/L? Yes, 8 wells Well 03N21W17Q01S: Image: Sampled by VCWPD and 2 wells sampled by other agencies*) Suifate SWN Nitrate Chioride TDS Suifate 03N21W17Q01S: Image: Sampled by VCWPD and 2 wells sampled by other agencies*) Suifate 03N21W17Q01S Image: Sampled by VCWPD and 2 wells are in the northeast end of the basin. OBN21W17G03S* Image: Sampled by VCWPD and 2 wells are in the northeast end of the basin. Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins OBN21W17G03S* Image: Sampled by VCWPD and 2 wells are in the northeast end of the basin. </th <th>"Key" well 03N22W36K05S - December level was down 1.7 feet from the</th> <th>(8 wells)</th>	"Key" well 03N22W36K05S - December level was down 1.7 feet from the	(8 wells)		
In general, for 6 wells measured in 2021 in the basin, water levels declined in 5 wells and did not change in 1 well over the course of the year from the 1st quarter reading. Secondary MCL Exceedances for Chloride >250mg/L? Secondary MCL Exceedances for Sulfate >250mg/L? MCL Exceedances for Sulfate >250mg/L? MCL Exceedances for Sulfate >250mg/L? Secondary MCL Exceedances for Sulfate >250mg/L? Secondary MCL Exceedances for Sulfate >250mg/L? MCL Exceedan	March measurement.	The water type for all samples is calcium sulfate type.		
In general, for 6 wells measured in 2021 in the basin, water levels declined in 5 wells and did not change in 1 well over the course of the year from the 1st quarter reading to the last quarter reading. Secondary MCL Exceedances for TDS >500mg/L? Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for SUlfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for TDS >500mg/L? Yes, 8 wells Yes, 8		Primary MCL Exceedances for Nitrate >45mg/L? No		
Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Yes, 8 wells Yes, 8 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells Yes, 8 wells Yes, 8 wells Yes, 9 wells Yes, 9 wells Yes, 9 wells <th></th> <th>Secondary MCL Exceedances for Chloride >250mg/L?No</th>		Secondary MCL Exceedances for Chloride >250mg/L?No		
Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) "Key" well 03N21W17Q01S: Test, 6 Weils (Secondary WCL Exceedances for Sulfate S250/HgL2 (Test, 6 Weils) The 5 year Groundwater Level Trend 2017 - 2021 (Based on 3 wells sampled by VCWPD and 2 wells sampled by other agencies*) Swith most wells showing an upward trend. 03N21W17001S 03N22W35Q01S 03N21W15G03S* 03N21W16H06S* Subsurface flow perclaition. Subsurface flow perclaition. Subsurface flow perclaition for Santa Clara River, and Santa Paula Creek (DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. Basin Potable Water Sources Groundwater				
5 Year Groundwater Level Trend 2017 - 2021 "Key" well 03N21W17Q01S: "Key" well 03N21W17Q01S: The 5 year trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. SWN Nitrate Chloride TDS Sulfate 03N21W09K04S Image: Chloride TDS Sulfate 03N21W07Q01S Image: Chloride TDS Sulfate 03N21W17Q01S Image: Chloride TDS Sulfate 03N21W17G03S* Image: Chloride TDS Sulfate 03N21W16H06S* Image: Chloride TDS Image: Chloride Image: Chloride Subsurface Hydrologic Connection to Other Groundwater Basins One well is in the southwest portion of the basin. Image: Chloride		Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells		
"Key" well 03N21W17Q01S: Image: Construction of the stample of by VCWPD and 2 wells sampled by volter agencies*) Swith most wells showing an upward trend. Swith rest of the voltament of the voltam	quarter reading to the last quarter reading.			
"Key" well 03N21W17Q01S: Image: Spear trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. SWN Image: Spear trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. SWN Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W15G03S* Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W15G03S* Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W15G03S* Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W16H06S* Image: Spear trend base is 03N21W16H06S* Image: Spear trend base is 00N21W15G03S* Image: Spear trend trend elevater level elevater level elevater level elevater is 03N21W16H06S* Image: Spear trend elevater level elevater level elevater level elevater level elevater levelevater levelevater levelevater level elevater level elevater leve	5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021		
"Key" well 03N21W17Q01S: Image: Spear trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. SWN Image: Spear trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. SWN Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W17Q01S Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W15G03S* Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W15G03S* Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W15G03S* Image: Spear trend based on 2017 through 2021 groundwater level elevations is 03N21W16H06S* Image: Spear trend base is 03N21W16H06S* Image: Spear trend base is 00N21W15G03S* Image: Spear trend trend elevater level elevater level elevater level elevater is 03N21W16H06S* Image: Spear trend elevater level elevater level elevater level elevater level elevater levelevater levelevater levelevater level elevater level elevater leve		(Based on 3 wells sampled by VCWPD and 2 wells sampled by other agencies*)		
The 5 year trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. 03N21W09K04S 03N21W17Q01S Image: Constrained on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. 03N21W17Q01S Image: Constrained on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. 03N21W17Q01S Image: Constrained on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. 03N21W15G03S* Image: Constrained on 2017 through 2021 groundwater Recharge Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins DWR collar River, and Santa Paula Creek to Santa Clara River, and Santa Paula Creek to Santa Clara River, and Santa Paula Creek to Santa Clara River. Dum create the project water via Lake Piru release to Santa Clara River. DOWN collar River. Dum create Sources Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins. Groundwater from Santa Paula Basin DWR casee M Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL. TDS is known to be high.	"Kev" well 03N21W17O01S:	SWN Nitrate Chloride TDS Sulfate		
The 5 year trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend.				
The 5 year trend based on 2017 through 2021 groundwater level elevations is mixed with most wells showing an upward trend. 03N22W35Q01S 03N21W15G03S* 03N21W15G03S* 03N21W15G03S* 03N21W16H06S* 0ances of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Fillmore groundwater basin. Upgradient: Yes, Fillmore groundwater basin. Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins Upgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins Downgradient: Yes, Nound and Oxnard Plain Forebay groundwater basins Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins Dum CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.				
03N21W15G03S* 03N21W15G03S* 03N21W16H06S* 03N21W16H06S* 03N21W16H06S* 03N21W16H06S* 03N21W16H06S* 03N21W15G03S* 03N21W16H06S* 03N21W15G03S* 03N21W16H06S* 03N21W16H06S* 03N21W16H06S* 04N24 03N21W16H06S* 05N24 03N21W16H06S* 05N24 03N21W16H06S* 03N21W16H06S* 03N21W16H06S* 05N24 03N21W16H06S* 05N24 03N21W16H06S* 05N24 03N21W16H06S* 05N24 03N21W16H06S* 05N24	The 5 year trend based on 2017 through 2021 groundwater level elevations is			
03N21W16H06S* Image: Construction of the basin and 4 wells are in the northeast end of the basin. Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins Basin Recharge: Infiltration of precipitation. Subsurface flow from Fillmore basin. Surface flow percolation from Santa Clara River, and Santa Paula Creek (DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. Subsurface Hydrologic Connection to Other Groundwater Basins Potable Water Sources Oowngradient: Yes, Fillmore groundwater Dasin. Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins Groundwater from Santa Paula Basin DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.	mixed with most wells showing an upward trend.			
One well is in the southwest portion of the basin and 4 wells are in the northeast end of the basin. Sources of Groundwater Recharge Basin Recharge: Basin Recharge: Influtation of precipitation. Subsurface flow from Fillmore basin. Surface flow percolation from Santa Clara River, and Santa Paula Creek (DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. Potable Water Sources Groundwater from Santa Paula Basin DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.				
Sources of Groundwater Recharge Subsurface flow from Fillmore Basin Recharge: Infiltration of precipitation. Subsurface flow from Fillmore basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: Yes, Fillmore groundwater basin. Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins State Clara River. Downgradient: Potable Water Sources Downgradient: Groundwater from Santa Paula Basin DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.		···· · ···· · · · · · · · · · · · · ·		
Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins Basin Recharge: Infiltration of precipitation. Subsurface flow from Fillmore Upgradient: Yes, Fillmore groundwater basin. basin. Surface flow percolation from Santa Clara River, and Santa Paula Creek Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins (DWR, 2006) Imported State Water Project water via Lake Piru release to Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins Sources Potable Water Sources Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins Groundwater from Santa Paula Basin DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.				
Basin Recharge: Infiltration of precipitation. Subsurface flow from Fillmore basin. Surface flow percolation from Santa Clara River, and Santa Paula Creek (DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. Upgradient: Yes, Fillmore groundwater basin. Potable Water Sources Potable Water Sources DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.				
basin. Surface flow percolation from Santa Clara River, and Santa Paula Creek (DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. Potable Water Sources Groundwater from Santa Paula Basin <u>DWR CASGEM Groundwater Basin Prioritization Level - Medium</u> Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.				
(DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River.				
Santa Clara River.		Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins		
Potable Water Sources Groundwater from Santa Paula Basin DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.				
Groundwater from Santa Paula Basin DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.	Santa Clara River.			
Groundwater from Santa Paula Basin DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.	Potable Water Sources			
Impact Comments: Nitrates can fluctuate significantly in the basin, and above MCL. Other inorganics present above MCL.TDS is known to be high.	Groundwater from Santa Paula Basin			
	DWR CASGEM Groundwater	Basin Prioritization Level - Medium		
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend ⇒ 🛛 Level trending up 🕇 🔹 Level Trending down 👢	Impact Comments: Nitrates can fluctuate significantly in the basin, an	d above MCL. Other inorganics present above MCL.TDS is known to be high.		
	impact comments. Nitrates car nucluate significantly in the basin, an			

Tierra Rejada Basin

Groundwater Basin Surface Area:	4 611 Acros (DW/P 2014)				
	≈450 (estimate determined from Ventura County Ag Commissioner's data)				
	Calleguas Creek				
	Unconfined Aquifer				
DWR Groundwater Basin Designation:	Tierra Rejada (4-15)				
SGMA Basin Priority:					
DWR Groundwater Basin Population:					
Known Water Supply Wells (as of May 2022)	Water Demand Estimate				
Number of Wells: 58	Irrigation Demand @ 2 AF/Ac: 900 AF/Yr				
Active: 36					
Destroyed: 9	Municipal Demand @ 0.5AF/person/Yr: 1,834 AF/Yr				
Abandoned: 1					
Can't Locate: 12	Total Demand Estimate: 2,734 AF/Yr				
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in General for All Wells Sampled by County				
No key well is in this basin.	(7 wells)				
	Five wells are magnesium bicarbonate type, one well is magnesium sulfate type and				
In general, for 2 wells measured in each quarter of 2021 in the basin, water	one well is calcium bicarbonate type.				
levels decreased in both wells from the 1st quarter reading to the last quarter	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 1 well				
reading in one well and declined in the other.	Secondary MCL Exceedances for Chloride >250mg/L? No				
	5				
	Secondary MCL Exceedances for TDS >500mg/L? Yes, 7 wells				
	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well				
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021				
	SWN Nitrate Chloride TDS Sulfate				
In general for 2 wells consistently measured: (2 wells)	02N19W10R02S 📫 📫 📫				
······································	02N19W11J03S 📕 📕 🛉 📕				
	02N19W14F01S				
	02N19W15J02S 🖊 🕇 🕇 🕇				
	Wells are in various locations in the basin.				
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins				
Basin Recharge: Percolation of rainfall to the valley floor, stream flow, and	Upgradient: No				
irrigation return.(DWR, 2006)					
	Downgradient: Yes, some subsurface flow into Arroyo Santa Rosa basin.				
Potable Water Sources					
Groundwater from Tierra Rejada Basin, Arroyo Santa Rosa Basin via Camrosa					
Water District. State Water Project water from Calleguas Municipal Water					
District via Camrosa Water District.					
	I Basin Prioritization Level - Very Low				
DWR CASGEM Groundwater Basin Prioritization Level - Very Low Impact Comments: Locally high nitrates documented in the basin (B-118).					
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend					

Upper Ventura River Subbasin

Groundwater Basin Surface Area:	7 430 Acres (DWR 2	2014)				
			otura County Ag C	`ommissioner'	e data)	
Watershed:	≈1,206 (estimate determined from Ventura County Ag Commissioner's data)					
	Unconfined Aquifer					
DWR Groundwater Basin Designation:	Ventura River Valley Basin, Upper Ventura River Subbasin (4-3.01)					
SGMA Basin Priority:						
DWR Groundwater Basin Population:						
Known Water Supply Wells (as of May 2022)	Water Demand Estimate					
Number of Wells: 202	Irrigation Demand @ 2 AF/Ac: 2,412 AF/Yr					
Active: 117						
Destroyed: 35	Municipal Demand @ 0.5AF/person/Yr: 7,980 AF/Yr					
Abandoned: 16						
Can't Locate: 31						
Non-Compliant: 3	Total Demand Estimate: 10,392 AF/Yr					
2021 Groundwater Levels in General for All Wells Gauged by County	2021 Groundwater Quality in General for All Wells Sampled by County					
			(3 wells)			
"Key" well 04N23W16C04S - September level was down 29.0 feet from the	The water in one sample is sodium bicarbonate, and two samples are calcium					
March measurement. Well could not be measured in December.	bicarbonate type.					
In general, for wells measured in 2021 in the basin, water levels declined in 5	Primary MCL Exceedances for Nitrate >45mg/l? No					
wells and rose in 2 wells over the course of the year from the 1st quarter	Secondary MCL Exceedances for Chloride >250mg/L? No					
reading to the last quarter reading.	Secondary MCL Exceedances for TDS >500mg/L? Yes, 3 wells					
	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well					
5 Year Groundwater Level Trend 2017 - 2021	5 Year Groundwater Quality Trend 2017-2021					
	SWN	Nitrate	Chloride	TDS	Sulfate	
"Key" well 04N23W16C04S: 1			<u></u>	<u></u>		
	04N23W09G03S			*	*	
	04142377030030					
-						
In general for 12 wells consistently measured: (9 wells) 🐥 (3 wells) 👚						
	Well is in the north part of the basain					
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins					
Basin Recharge: percolation of flow in the Ventura River and, to a lesser extent,	Upgradient: No.					
by percolation of rainfall to the valley floor and excess irrigation water. (DWR,	Downgradient: Lower Ventura River basin.					
2006)						
Potable Water Sources						
Groundwater from Lower Ventura River basin. Surface water from Lake						
Casitas via Casitas MWD to various water purveyors.						
DWR CASGEM Groundwater						
Impact Comments: TDS is known to	be high in some parts	of the basin (B	118)			
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending u	p 🚹 🛛 Level	Trending down			
					, and a second	