Ventura County Watershed Protection District Water Resources Division

2020 Annual Report of Groundwater Conditions

Ventura County Watershed Protection District Water Resources Division

MISSION:

"Protect, sustain, and enhance Ventura County watersheds now and into the future for the benefit of all by applying sound science, technology, and policy."

2020 Annual Report of Groundwater Conditions

Cover Photo: Irrigation well in the Pleasant Valley Basin

Ventura County Watershed Protection District Water Resources Division Groundwater Section

2020 Annual Report of Groundwater Conditions

Glenn Shephard, PE, Director

Arne Anselm, Deputy Director

Kimball Loeb, PG, CEG, CHG, Groundwater Manager

James Maxwell, PG, CEG, Groundwater Specialist

Jeff Dorrington, Water Resources Specialist

Report Published: 2021

County Government Center Administration Building 800 South Victoria Avenue Ventura, CA 93009 (805) 654-2088 (phone) (805) 677-8762 (fax) www.vcpublicworks.org/wp

Table of Contents

1.0	Intro	oduction	1
	1.1	Geography and County Information	1
	1.2	Population	1
2.0	Cou	Inty Well Ordinance	2
	2.1	Permits	2
	2.2	Well Inspections	2
	2.3	Well Inventory and Status	2
3.0	Clin	nate & Precipitation	
4.0	Gro	undwater	8
	4.1	Groundwater Quality Characterization	10
	4.2	Groundwater Quality Sampling	
	4.3	Water Quality Standards	
5.0	Cur	rent Sampling Results by Basin	
	_	Arroyo Santa Rosa Valley Basin (DWR Basin No. 4-007)	
		Carpinteria Basin (DWR Basin No. 3-018)	
		Conejo Basin (DWR Basin No. 4-010)	
		Cuddy Ranch Area Basin (DWR Basin No. 5-083)	
		Cuyama Valley Basin (DWR Basin No. 3-013)	
		Santa Clara River Valley Basin – Fillmore Subbasin (DWR Basin No. 4- 004.05)	31
		Las Posas Valley Basin (DWR Basin No. 4-008)	
		Las Posas Valley Basin – East Las Posas Management Area	
		Las Posas Valley Basin – West Las Posas Management Area	
		Lockwood Valley Basin (DWR Basin No. 4-017)	
		Santa Clara River Basin – Mound Subbasin (DWR Basin No. 4-004.03)	41
		Ojai Valley Basin (DWR Basin No. 4-002)	43
		Santa Clara River Valley Basin – Oxnard Subbasin (DWR Basin No. 4-00	-
		Forebay Management Area	
		Upper Aquifer System (UAS)	
		Lower Aquifer System (LAS)	
		Santa Clara River Valley Basin – Piru Subbasin (DWR Basin No. 4-004.00	-
		Pleasant Valley Basin (DWR Basin No. 4-006)	
		Santa Clara River Basin – Santa Paula Subbasin (DWR Basin No. 4-004.	
		Hidden Valley Basin (DWR Basin No. 4-016)	
		Simi Valley Basin (DWR Basin No. 4-009)	
		Tapo/Gillibrand Basin	
		Thousand Oaks Area Basin (DWR No. 4-019)	
		Tierra Rejada Basin (DWR Basin No. 4-015)	75

Ventura River Valley Basin – Lower Ventura River Subbasin (DWR Basin M 4-003.02) Ventura River Valley Basin – Upper Ventura River Subbasin (DWR Basin M 4-003.01)	80 No. 82 . 84 87
	82 . 84 87
	87
6.0 Groundwater Elevations	87
Water Level Hydrographs	
Spring Groundwater Elevation Changes in Key Wells	87
Potentiometric Surface Maps	
California Statewide Elevation Monitoring Program (CASGEM)	
7.0 Water Supplies	
Groundwater Extractions	
Wholesale Districts	
Surface Water	
Surface & Imported Water Demands	
8.0 Sustainable Groundwater Management Act (SGMA)	
Critically Overdrafted Basins	
High & Medium Priority Basins in Ventura County	
Adjudicated Basins	
Groundwater Sustainability Agencies (GSA's)	
References	
Appendices	
Appendix A – Glossary of Groundwater Terms	
Appendix B – Key Water Level Hydrographs	
Appendix C – Groundwater Level Measurement Data	
Appendix D – Water Quality Section	
Appendix E – Piper Diagrams	
Appendix F - Basin Summary Sheets	

List of Figures

Figure 3-1: Water Year 2020 precipitation and normal precipitation totals	4
Figure 3-2: Average annual rainfall for Ventura County	5
Figure 3-3: Precipitation maps of wet years	6
Figure 3-4: Precipitation maps of water years 2019 and 2020	7
Figure 4-1: Ventura County groundwater basins map	9
Figure 4-2: Example of a Piper diagram	10
Figure 4-3: Piper diagram with water types	11
Figure 4-4: Example of Stiff diagram.	12
Figure 4-5: Location of wells sampled in North half of the County	13
Figure 4-6: Location of wells sampled in South half of the County	14
Figure 5-1: Arroyo Santa Rosa Basin wells sampled with Stiff diagrams and selected inorganic constituents.	
Figure 5-2: Arroyo Santa Rosa Basin nitrate concentrations for 2020	23
Figure 5-3: Arroyo Santa Rosa nitrate concentrations for 2011 – 2020.	24
Figure 5-4: Carpinteria Basin sampled wells with Stiff diagrams and selected inorganic constituents.	26
Figure 5-5: Conejo Basin sampled wells with Stiff diagrams and selected inorganic constituen	ts. 28
Figure 5-6: Cuddy Ranch Area Basin sampled wells with Stiff diagrams and selected inorgan constituents.	
Figure 5-7: Cuyama Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.	30
Figure 5-8: Fillmore Subbasin wells sampled with Stiff diagrams and selected inorganic constituents.	32
Figure 5-9: Las Posas Valley Basin EMA, sampled wells with Stiff diagrams and selected inorganic constituents.	35
Figure 5-10: Las Posas Valley Basin WMA sampled wells with Stiff diagrams and selected inorganic constituents.	38
Figure 5-11: Lockwood Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents	
Figure 5-22: Mound Subbasin sampled wells with Stiff diagrams and selected inorganic constituents	
Figure 5-13: Ojai Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.	44
Figure 5-14: Oxnard Subbasin Forebay Management Area sampled wells with Stiff diagrams and selected inorganic constituents.	46
Figure 5-15: Oxnard Subbasin Oxnard Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.	
Figure 5-16: Oxnard Subbasin Mugu Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.	49
Figure 5-17: Oxnard Subbasin Oxnard & Mugu Aquifers cross screened sampled wells with S diagrams and selected inorganic constituents.	

Figure 5-18 Oxnard Subbasin Hueneme Aquifer sampled wells with Stiff diagrams and select inorganic constituents.	ted 53
Figure 5-19 Oxnard Subbasin Fox Canyon Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.	55
Figure 5-20 Oxnard Subbasin Hueneme and Fox Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents	57
Figure 5-21 Oxnard Subbasin Fox Canyon and Grimes Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents.	58
Figure 5-22 Oxnard Subbasin Hueneme, Fox Canyon and Grimes Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents	60
Figure 5-23: Piru Basin sampled wells with Stiff diagrams and selected inorganic constituent	ts. 62
Figure 5-24: Pleasant Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.	
Figure 5-25: Santa Paula Subbasin sampled wells with Stiff diagrams and selected inorganic constituents.	c 67
Figure 5-26: Hidden Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.	69
Figure 5-27: Simi Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.	71
Figure 5-28: Tapo/Gillibrand Basin sampled wells with Stiff diagrams and selected inorganic constituents.	73
Figure 5-29: Thousand Oaks Area Basin sampled wells with Stiff diagrams and selected inorganic constituents.	74
Figure 5-30: Tierra Rejada Basin sampled wells with Stiff diagrams and selected inorganic constituents.	76
Figure 5-31: Tierra Rejada Basin location of sampled wells and nitrate concentrations	77
	79
Figure 5-33: Ventura River Valley – Lower Ventura River Subbasin sampled well with Stiff diagram and selected inorganic constituents	81
Figure 5-34: Ventura River Valley – Upper Ventura River Subbasin sampled well with Stiff diagram and selected inorganic constituents.	83
Figure 6-1: Water level wells measured in the northern half of the County	85
Figure 6-2: Water level wells measured in the southern half of the County	86
Figure 6-3: Hydrograph showing the groundwater elevation through time for Well No. 01N21W02J02S, located in the Pleasant Valley Basin	87
Figure 6-4: Key water level wells in Ventura County	
Figure 5-5: Santa Clara River Valley Spring 2016.	
Figure 5-6: Santa Clara River Valley Fall 2016	
Figure 5-7: Upper Aquifer System Spring 2016.	
Figure 5-8: Upper Aquifer System Fall 2016	
Figure 5-9: Lower Aquifer System Spring 2016.	
Figure 5-10: Lower Aquifer System Fall 2016	97
Figure 7-1: Groundwater Management Agencies in Ventura County	100

Figure 7-2: Wholesale Water District Boundary Map	102
Figure 7-3: Graph of Precipitation versus Recharge by UWCD	104
Figure 7-4: Surface water storage and diversion map ^{11, 12, 13}	106
Figure 8-1: Critically overdrafted basins in Ventura County	110
Figure 8-2: 2019 Final SGMA B118 basin prioritization.	112

List of Tables

Table 2-1: Well inventory and status	2
Table 4-1: Primary maximum contaminant levels for Title 22 metals.	15
Table 4-2: Primary maximum contaminant levels for radionuclides	18
Table 4-3: Secondary Maximum Contaminant Levels	19
Table 5-1: Example of summary table	20
Table 5-2: Selected water quality results for the Arroyo Santa Rosa Valley Basin.	21
Table 5-3: Selected water quality results for the Carpinteria Basin.	25
Table 5-4: Selected water quality results for the Conejo Basin.	27
Table 5-5: Selected water quality results for the Cuyama Valley Basin.	30
Table 5-6: Selected water quality results for the Fillmore Subbasin	31
Table 5-7: Selected water quality results for the Las Posas Valley Basin – East Las Posas	
Management Area.	34
Table 5-8: Selected water quality results for the Las Posas Basin - West Las Posas Management Area	36
Table 5-9: Selected water quality results for the Lockwood Valley Basin	
Table 5-9. Selected water quality results for the Mound Subbasin. Table 5-10: Selected water quality results for the Mound Subbasin.	
Table 5-10: Selected water quality results for the Ojai Valley Basin. Table 5-11: Selected water quality results for the Ojai Valley Basin.	
Table 5-11: Selected water quality results for the Oxnard Subbasin Forebay Management A	
Table 5-13: Selected water quality results for wells screened in the Oxnard Aquifer	47
Table 5-14: Selected water quality results for wells screened in the Mugu Aquifer	49
Table 5-15: Selected water quality results for wells screened across the Oxnard & Mugu	
Aquifers	
Table 5-16: Selected water quality results for wells screened in the Hueneme Aquifer.	
Table 5-17: Selected water quality results for wells screened in the Fox Canyon Aquifer	53
Table 5-18: Selected water quality results for wells screened across the Hueneme & Fox	FC
Canyon Aquifers.	
Table 5-19: Selected water quality results for wells across the Fox Canyon & Grimes Aquife	
Table 5-20: Selected water quality results for wells screened across the Hueneme, Fox Can & Grimes Aquifers	yon
Table 5-21: Selected water quality results for the Piru Subbasin.	
Table 5-21: Selected water quality results for the Pleasant Valley Basin	
Table 5-22. Selected water quality results for the Santa Paula Subbasin. Table 5-23: Selected water quality results for the Santa Paula Subbasin.	
Table 5-23: Selected water quality results for the Carpinteria Basin. Table 5-24: Selected water quality results for the Carpinteria Basin.	
	00

Table 5-25: Selected water quality results for the Simi Valley Basin	70
Table 5-26: Selected water quality results for the Simi Valley Basin	72
Table 5-27: Selected water quality results for the Tierra Rejada Basin	75
Table 5-28: Selected Water Quality Results for the Upper Ojai Basin.	78
Table 5-29: Selected water quality results for the Lower Ventura River Subbasin	80
Table 5-30: Selected water quality results for the Upper Ventura River Subbasin	82
Table 6-1: Key water level changes in feet below ground surface for 2020.	
Table 7-1: Groundwater extractions within reporting agencies 2011 through 2020.,12	101
Table 7-2: Precipitation versus recharge volume for UWCD.	103
Table 7-3: Wholesale Water District Deliveries 2007-2016 Main Main	105

Executive Summary

Groundwater is the primary water source in Ventura County, providing approximately 63% of the total water for domestic, agricultural and industrial uses. Agricultural use accounts for the majority of groundwater consumption. The County provides protection for groundwater quality and supply through Well Ordinance No. 4468 by regulating the construction, maintenance, use and destruction of wells and engineering test holes (soil borings) in such a manner that the groundwater of the County will be of beneficial use without jeopardizing the health, safety or welfare of the people of Ventura County.

Water year 2020 saw average rainfall throughout the County. In January, the County was designated as an area of no drought but by the end of the year the designation had been changed by the U.S. Drought Monitor (<u>http://droughtmonitor.unl.edu</u>) to an area of moderate drought. The continued drought along with regulatory constraints led to a decrease in surface water releases and diversions. When less surface water is available, local groundwater demand increases. After continued drought conditions but with areas of average precipitation, groundwater elevations were mostly mixed compared with the previous spring. Nine of the key well levels had increased and seven showed a continuing decline.

Water quality trends within County basins were generally unchanged from previous years. Key water quality concerns in some basins continue to be high concentrations of total dissolved solids (TDS) and nitrate; both exceeding the maximum contaminant level (MCL) in localized areas within specific basins. Basin summary sheets included in the appendices include analyses of water level and water quality trends over a five-year period.

The County of Ventura does not regulate groundwater extractions. Extractions are regulated by two groundwater management agencies (GMAs) and a water conservation district in specific areas of the County: the Ojai Basin Groundwater Management Agency (OBGMA), the Fox Canyon Groundwater Management Agency (FCGMA), and United Water Conservation District (UWCD). These agencies cover approximately 8% of the land area in Ventura County. Well owners and operators within the statutory boundaries of an agency are required to report extractions to their respective agencies. Groundwater extractions outside of these boundaries are often unreported with total County-wide extractions unknown.

Several basins within the County have been designated as critically overdrafted by the California State Department of Water Resources (DWR). Legislation passed by the California State Assembly in 2014 aims to change the way groundwater is managed. The Sustainable Groundwater Management Act (SGMA) is a tripartite legislation that requires Groundwater Sustainability Agencies (GSAs) to be formed in all DWR-designated high and medium priority basins. GSAs have been organized in all high and medium priority basins within the County and are working to develop (as of Dec 2020) Groundwater Sustainability Plans (GSPs) to manage groundwater supplies. In 2014, the County passed Emergency Ordinance No. 4466. Section 4826.1 - Water Well and Water Well Permit Prohibitions (known as the Well Moratorium) temporarily bans, with some exceptions, issuance of permits for construction, modification or repair of existing wells. The emergency ordinance was established to protect groundwater after a spike in new well application submittals following SGMA legislation. The Well Moratorium will expire in a basin when its respective GSA submits the required GSP to the DWR.

This report provides a summary of Calendar Year 2020 water quality and groundwater elevations for the groundwater basins of Ventura County.

1.0 Introduction

The Ventura County Watershed Protection District (VCWPD) was formed on September 12, 1944, as the "Ventura County Flood Control District." Since 2003, it has been known as the VCWPD. The Groundwater Resources Section is part of the VCWPD and has collected groundwater data since 1928. Historically, groundwater data was published in Triennial or Quadrennial reports in a collaborative effort with the Flood Control District, Hydrology Section. The last such report was published in December 1986 and covered the years 1981 through 1984. Between 1985 and 2004, Groundwater Resources drafted several unpublished Groundwater Conditions Reports. In 2006, Groundwater Resources published its first *Groundwater Quality Report* for the years 2005 and 2006. The *2020 Annual Report of Groundwater Conditions (Annual Report)* is the 15th consecutive publication.

The purpose of this report is to provide information on groundwater conditions in Ventura County and to publish the results of the quarterly groundwater elevation measuring of approximately 200 wells and Fall groundwater quality sampling of water supply wells.

This report is prepared annually due to changing groundwater conditions and fluctuating seasonal conditions. Basin summary sheets in Appendix F provide a single-page summary of water level and quality trends along with other key data over a five-year period. Detailed water quality and water level data are presented for each basin. Laboratory analytical results and supporting data are included in the appendices.

1.1 Geography and County Information

Ventura County was formed on January 1, 1873, when it separated from Santa Barbara County and became one of 58 counties in the State of California. Geographically, the county includes 42 miles of coastline and the Los Padres National Forest, situated in the northern portion of the County, which accounts for 46% of the County's area. Fertile valleys and plains in the southern half of the County make it a leading agricultural producer. The County was ranked eleventh among California counties in total crop value in 2019¹ and eleventh among all Counties in the United States². Together, farming and the Los Padres National Forest occupy half of the County's 1.2 million acres.

1.2 Population

The unincorporated areas, along with the ten incorporated cities of Camarillo, Fillmore, Moorpark, Ojai, Oxnard, Port Hueneme, Santa Paula, Simi Valley, Thousand Oaks, and San Buenaventura (Ventura), rank Ventura as the 11th most populous county in the State. On May 1, 2020, the California State Department of Finance estimated Ventura County's population to be 842,886, a decrease of 0.4 percent over the revised 2019 population estimate of 846,050. The City of Port Hueneme had the largest estimated percentage increase in population (0.6) while the City of Moorpark had a decrease of 1.0 percent over the previous year. Ventura County's population is expected to exceed 870,000 by the year 2030.

¹ California Department of Food and Agriculture *California Agricultural Statistics Review 2019-2020*

² Farm Bureau of Ventura County

2.0 **County Well Ordinance**

The first County Water Well Ordinance was adopted by the Ventura County Board of Supervisors in 1970 and has since undergone six revisions. The current Well Ordinance was last updated in December 2014 (No. 4468) to better align with SGMA.

The Well Ordinance provides for protection of groundwater quality and supply so that groundwater will be suitable and sustainable for beneficial use and not jeopardize the health of the people of Ventura County. This includes issuing well permits and inspecting the installation and destruction of wells. Quarterly water level measurements, annual water quality sampling, groundwater basins condition reporting, review of development projects, and provision of water quality and well information are carried out to better support the purpose of the Well Ordinance.

2.1 Permits

Permits are required for construction, repair, and destruction of groundwater wells, cathodic protection wells, monitoring wells, and geotechnical borings (engineering test holes). The permits are required to ensure wells and borings are constructed and sealed per California DWR Well Standards. Permits are issued throughout the County, except within the City of Oxnard which issues well permits within its city boundaries. 107 permits for wells and engineering test holes were conditioned and issued during calendar year 2020.

2.2 Well Inspections

Per the Well Ordinance, well seals are inspected for each water supply well installation or destruction, cathodic protection well installation or destruction, and major modifications or repairs to existing water supply wells. A total of 49 inspections were performed in 2020.

2.3 Well Inventory and Status

At the end of 2020 there were 9,330 well records in the database in the categories listed in Table 2-1.

Table 2-1: Well inventory and status					
2020 Status	Number				
Active	4,122				
Abandoned	462				
Can't Locate	1,830				
Non-Compliant	55				
Non-Compliant Abandoned	118				
Destroyed	2,733				
Exempt	10				

- <u>Active</u> wells meet or exceed the minimum requirement of 8 hours pumping per calendar year as described in the County of Ventura Well Ordinance No. 4468.
- <u>Abandoned</u> wells do not meet the 8-hour minimum pumping requirement or are in a condition that no longer allows the well to be used.
- <u>Can't Locate</u> wells are usually old rural wells for which the Groundwater Section has historic well location data but the locations may now be in areas that have subsequently been developed. There are several reasons why a well may be listed as "Can't Locate." The current owner of the property may be unaware of the existence of a well on their property or a County approved search has been conducted and no well has been found.

- <u>Non-Compliant</u> wells are generally active wells for which the responsible party failed to respond to written communication from the Groundwater Section.
- <u>Non-Compliant Abandoned</u> wells are classified as such when a well owner has failed to respond to written communication from the Groundwater Section to take action on an inactive well. The Well Ordinance prohibits anyone from owning an abandoned well. Abandoned wells pose a physical safety risk and may act as a potential conduit for contaminants to reach groundwater.
- <u>Destroyed</u> wells are wells that have been properly destroyed under permit.
- <u>Exempt</u> wells have been found to be in good enough condition to remain inactive for a period of five years before being re-activated or re-inspected. To be listed as exempt, a well inspection report from a licensed professional geologist or civil engineer must be submitted by the well owner to the Groundwater Section for review and approval.

3.0 Climate & Precipitation

The mean annual daily air temperature for 2020 at the National Weather Service Oxnard area office was 64 degrees Fahrenheit (°F), with an average maximum high of 75.1 °F and an average minimum low of 53.0 °F³. The average annual rainfall, countywide was approximately 16.8 inches⁴ for the 2020 water year⁵. Throughout the County, precipitation for the 2020 water year was less than 100% of normal. Moorpark received 95% of normal, while the Matilija Dam area received 73% of the normal rainfall total. **Figure 3-1** shows water year 2020 received rainfall totals and normal precipitation totals for that gauge/area. Averages are determined from the 1957-1992 base period, as this is a 35-year period that is representative of the long-term average for multiple sites in Ventura County⁶. **Figure 3-2** depicts average rainfall for the periods 2001 to 2020 for all of Ventura County. **Figure 3-3** shows a generalized distribution of rainfall across the County for water years with more precipitation (2010 and 2011) and **Figure 3-4** shows rainfall distribution for the last two water years (2019 and 2020).

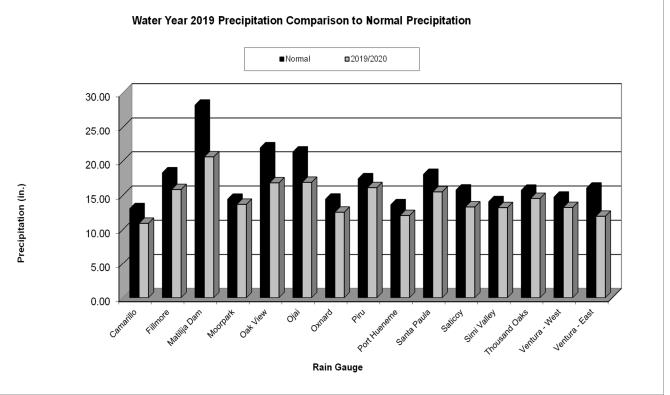


Figure 3-1: Water Year 2020 precipitation and normal precipitation totals

³ Based on *preliminary* data from the National Climatic Data Center <u>http://www.ncdc.noaa.gov</u>.

⁴ Based on *preliminary* data from all active rain gauges.

⁵ Water Year defined as: October 1 to September 30 of the following year. VCWPD precipitation data is *preliminary* and subject to change.

⁶ According to the Ventura County Hydrology Section's Historic Rainfall webpage.

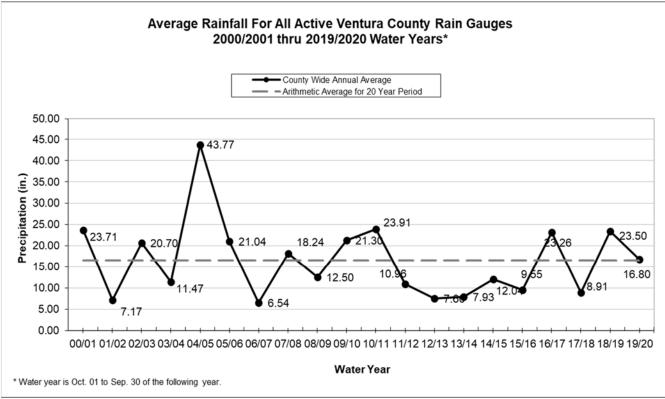
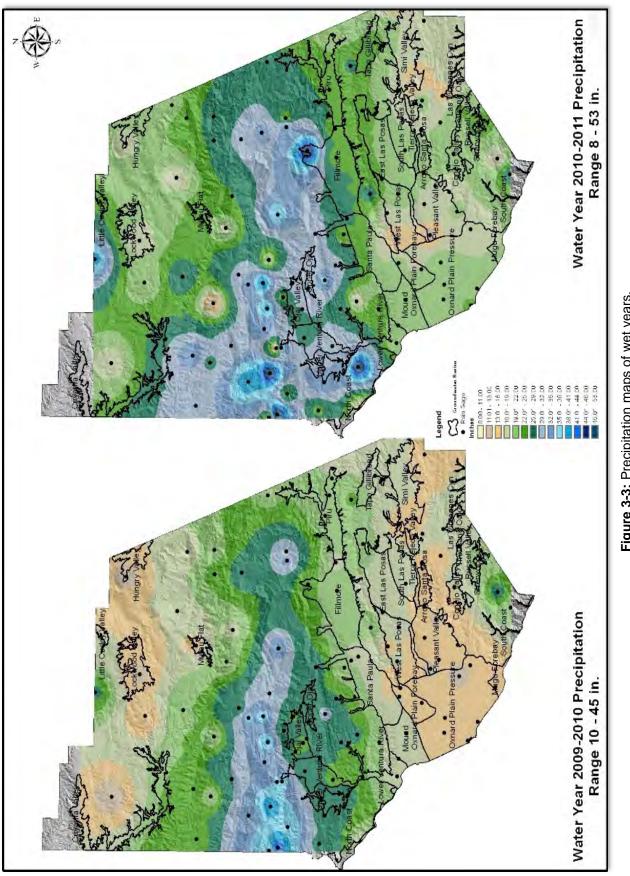
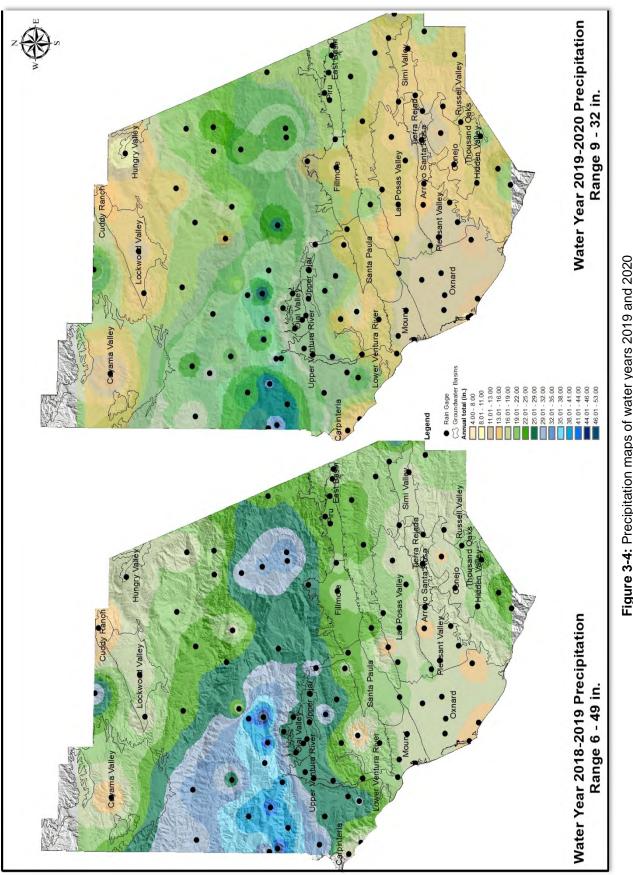




Figure 3-2: Average annual rainfall for Ventura County.

7

Figure 3-4: Precipitation maps of water years 2019 and 2020

4.0 Groundwater

Groundwater is the primary source of water in Ventura County and accounts for approximately 63% of the total County water demand. Most accessible groundwater is found in 28 groundwater basins and subbasins (Figure 4-1). Groundwater basins in the north half of the County do not join directly with other basins, while some groundwater basins in the south half of the County are connected on the surface and in the subsurface to varying degrees. Detailed basin descriptions are provided in their respective section.

The County and local agencies, individual water purveyors, and the USGS all collect groundwater data. Recharge of groundwater occurs naturally from infiltration of rainfall and river/streamflow, artificially through injection of imported water and spreading of diverted river water into recharge basins. Known groundwater extraction data within certain basins is presented later in this report along with extraction estimations from other basins.

Defined groundwater basins as shown in DWR Bulletin 118 (B118) are used for the Annual Report. DWR Bulletin 118 basin boundaries are used to align with other agencies and avoid confusion.

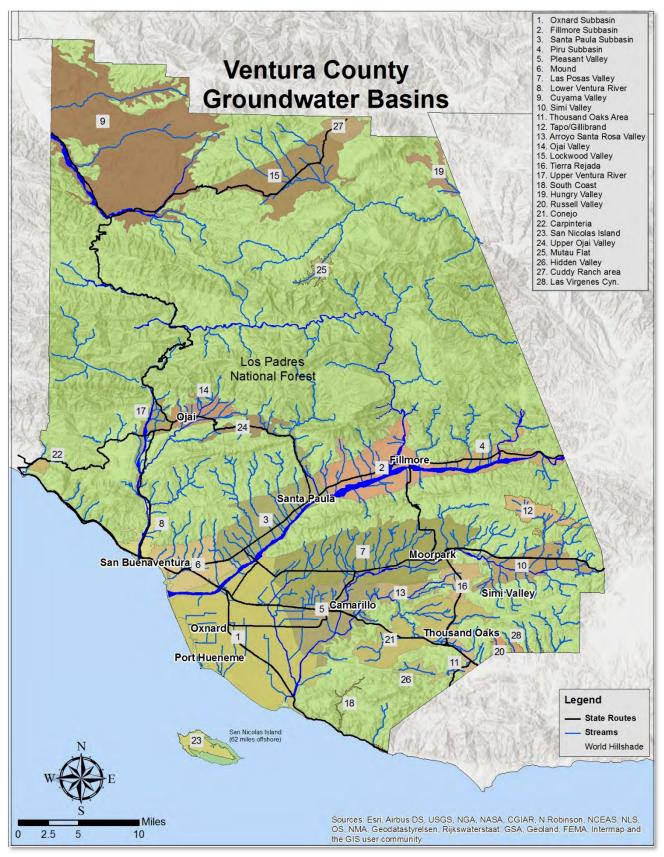


Figure 4-1: Ventura County groundwater basins map

4.1 Groundwater Quality Characterization

Groundwater contains a variety of chemical constituents at different concentrations. Flowing water assumes a diagnostic chemical composition from interactions with surrounding alluvium or bedrock. For most groundwaters, 95% of the ions are represented by positively charged cations sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), and the negatively charged anions chloride (Cl-), carbonate (CO32-), bicarbonate (HCO3-), and sulfate (SO42-). These ionic species when added together account for most of the salinity that is commonly referred to as total dissolved solids (TDS). The Annual Report uses Piper and Stiff diagrams for basic characterization of the chemical composition of groundwater.

Piper Diagram

A piper diagram is a graph to visualize the chemistry of a water sample. The diagram is comprised of a ternary diagram in the lower left representing cations, a ternary diagram in the lower right representing the anions, and a diamond plot in the middle representing a combination of the two (composition) (**Figure 4-2**). The diamond-shaped field between the triangles is used to represent the composition of water with respect to its anions and cations.

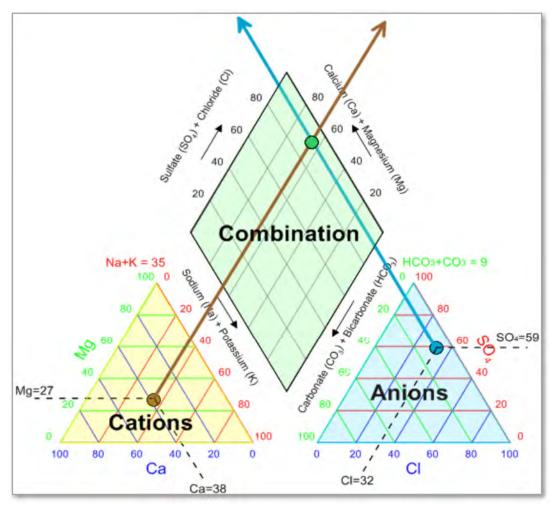


Figure 4-2: Example of a Piper diagram

In the example diagram in **Figure 4-2** the cations plot in the mixed zone in the lower left triangle and the anions plot in the sulfate zone in the lower right triangle. The plotted points are projected onto the diamond-shaped center field and show that the water is calcium sulfate type.

Groundwater samples are interpreted as illustrated in Figure 4-3:

- top quadrant: calcium sulfate waters typically associated with gypsum and mine drainage
- <u>left quadrant</u>: calcium bicarbonate waters typically shallow, fresh groundwater
- right quadrant: sodium chloride waters typically marine and ancient groundwater
- <u>bottom quadrant</u>: sodium bicarbonate waters typically deep groundwater influenced by ion exchange

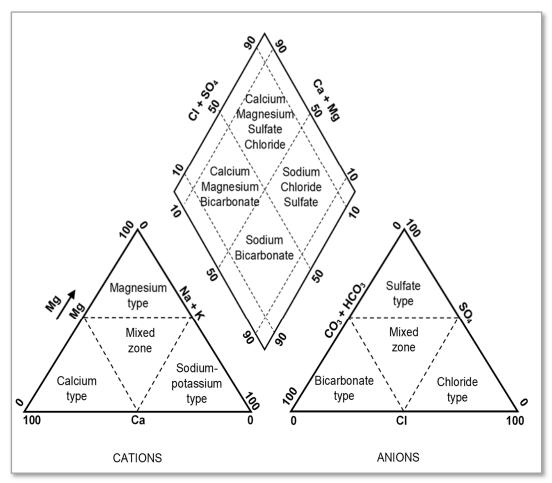


Figure 4-3: Piper diagram with water types.

Figure 4-3 shows how a Piper diagram is used to characterize water quality. By grouping the anions (Cl⁻, $CO_3^{2^-}$, HCO_3^{-} , and $SO_4^{2^-}$) into one group and cations (Na⁺, K⁺, Ca²⁺, Mg²⁺) into another group, the concentration of each anion and cation group can be calculated. The concentration of each anion or cation group in a sample is then converted to milliequivalents/L (meq/L) and then normalized on a percentage scale. The percent concentrations are then plotted on the lower ternary diagrams. The position of the points is projected parallel to the magnesium and sulfate axes, respectively, until they intersect in the center field (Fetter, 1988).

Piper diagrams for each basin are in Appendix E.

Stiff Diagram

A second method to present water quality results is through a Stiff diagram (**Figure 4-4**). The same cations and anions that are plotted in the piper diagrams are shown in the Stiff diagrams. The ions are plotted on

either side of a vertical axis in milliequivalents per liter (meq/L), cations on the left of the axis and anions on the right. The polygonal shape created is useful in making a quick visual comparison of different water samples as waters with similar characteristics will display a similar shape. Stiff diagrams for wells sampled in 2020 are plotted on their respective basin map.

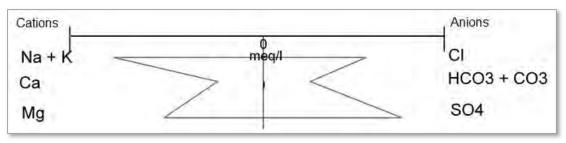


Figure 4-4: Example of Stiff diagram.

4.2 Groundwater Quality Sampling

Water quality data is collected to assess groundwater quality within the County groundwater basins. Data from other organizations in the County is shared. Wells sampled in the north half of the County are shown in **Figure 4-5**. Wells sampled in the south half of the County are shown in **Figure 4-6**.

A total of 202 water supply wells were sampled throughout the County in 2020. Well owners are provided with a copy of the laboratory analysis and notified if any of the constituents analyzed exceed the State and Federal established maximum contaminant levels (MCLs) for drinking water.

Laboratory analyses are conducted by Fruit Growers Laboratory in Santa Paula, a laboratory certified under the State Environmental Laboratory Accreditation Program. All samples from wells were analyzed for general minerals with a random subset of 58 wells selected for analysis of California Title 22 metals.

Water quality sampling results are included in Appendix D. General interpretations of quality data are detailed in the following subsections.

Additional groundwater quality data is available from other sources, such as water districts and other agencies that collect and analyze groundwater. Organic groundwater chemistry data is also available for some areas of the County through the State Water Quality Control Board's GeoTracker website for environmental cleanup sites (https://geotracker.waterboards.ca.gov/).

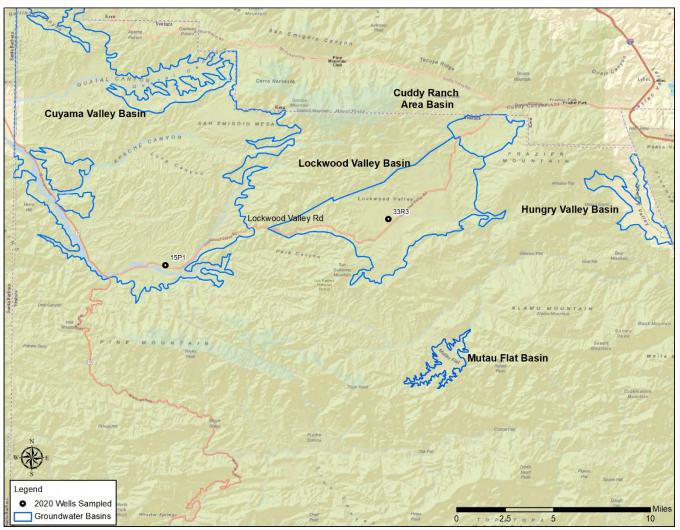


Figure 4-5: Location of wells sampled in North half of the County.

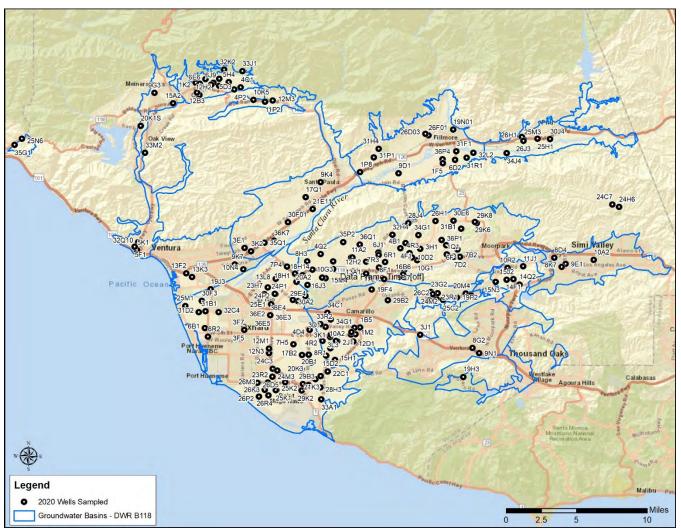


Figure 4-6: Location of wells sampled in South half of the County.

4.3 Water Quality Standards

The Groundwater Resources Section uses Water Quality Standards established by the Los Angeles Regional Water Quality Control Board (LARWQCB) for assessing groundwater quality in Ventura County. Water Quality Standards provide for the reasonable protection and enhancement of surface and groundwater and consist of beneficial use and water quality objectives as mandated by the California Water Code (§13241). LARWQCB developed twenty-four defined beneficial uses, all of which are compiled in the Basin Plan for the Coastal Watersheds of Los Angeles and Ventura County (Basin Plan). Water quality objectives protect public health by maintaining or enhancing existing or potential beneficial uses of water. The chart on the following page is an excerpt from the Basin Plan that shows the beneficial uses of groundwater for all basins in Ventura County.

The Basin Plan specifies Ventura County's narrative and numerical Water Quality Standards for groundwater and incorporates Title 22, California Code of Regulations (CCR) standards for groundwater by reference. These are referred to as primary MCLs. A primary MCL is the highest concentration of a contaminant allowed in drinking water that can be present without any adverse health effects. Primary MCLs developed by the State meet or exceed the United States Environmental Protection Agency (EPA) standards and are legally enforceable standards.

Los Angeles Regional Quality Control Board Table of Beneficial Uses of Ground Water by Basin for Ventura County

DWR ^{ad} Basin No.	BASIN	MUN	IND	PROC	AGR	AQUA
	PITAS POINT AREA ^{ae}	E	E	Р	E	
4-1	UPPER OJAI VALLEY	E	E	E	E	
4-2	LOWER OJAI VALLEY-OJAI VALLEY	E	E	E	E	
4-3	VENTURA RIVER VALLEY					
4-3.01	Upper Ventura	E	E	E	E	
4-3.02	Lower Ventura	P	E	P	E	
4-4	SANTA CLARA RIVER VALLEY ^{af}					
4-4.02	Oxnard					
4-4.02	Oxnard Forebay	E	E	E	E	
-	Confined aguifers	E	E	E	E	
	Unconfined and perched aquifer	E	Р		E	
4-4.03	Mound					
	Confined aquifers	E	E	E	E	
	Unconfined and perched aquifer	E	Р		E	
4-4.04	Santa Paula					
	East of Peck Road	E	E	E	E	
	West of Peck Road	E	E	E	E	
4-4.05	Fillmore					
	Pole Creek Fan area	E	E	E	E	
	South side of Santa Clara River	E	E	E	E	
	Remaining Fillmore area	E	E	E	E	E
	Topa Topa (upper Sespe) area	Р	E	Р	E	
4-4.06	Piru					
	Upper area (above Lake Piru)	Р	E	E	E	
	Lower area east of Piru Creek	E	E	E	E	
	Lower area west of Piru Creek	E	E	E	E	

DWR ^{ad} Basin No.	BASIN	MUN	IND	PROC	AGR	AQUA
4-6	PLEASANT VALLEY ^{ag}					
	Confined aquifers	E	E	E	E	
	Unconfined and perched aquifers	Р	E	E	E	
4-7	ARROYO SANTA VALLEY ^{ag}	E	E	E	E	
4-8	LAS POSAS VALLEY ^{ag}	E	E	E	E	
4-9	SIMI VALLEY					
	Simi Valley Basin					
	Confined aquifers	E	E	E	E	
	Unconfined aquifers	E	E	E	E	
	Gillibrand Basin	E	E	Р	E	
4-10	CONEJO VALLEY	E	E	E	E	
4-15	TIERRA REJADA	E	Р	Р	E	
4-16	HIDDEN VALLEY	E	Р		E	
4-17	LOCKWOOD VALLEY	E	E		E	
4-18	HUNGRY VALLEY	E	Р	E	E	
4-19	THOUSAND OAKS AREA ^{aj}	E	E	E	E	
4-20	RUSSELL VALLEY	E	Р		E	
4-21	CONEJO-TIERRA REJADA VOLCANIC ^{ak}	E			E	

E: Existing beneficial use.

P: Potential beneficial use.

c: Beneficial uses for ground waters outside of the major basins listed on this table and outlined in Fig 1-9 have not been specifically listed. However, ground waters outside of the major basins are, in many case Footnotes are consistent for all beneficial use tables. significant sources of water. Further existing sources of water for downgradient basins, and such, beneficial uses in the downgradient basins shall apply to these areas ad: Basins are numbered according to DWR Bulletin No. 118-Update 2003 (DWR, 2003). ae: Ground waters in the Pitas Point area (between the lower Ventura River and Rincon Point) are not considered to comprise a major basin and, accordingly, have not been designated a basin number by the DWR or outlined on Fig. 1-9. af: Santa Clara River Valley Basin was formerly Ventura Central Basin and Acton Valley Basin was formerly Upper Santa Clara Basin (DWR, 1980). ag: Pleasant Valley, Arroyo Santa Rosa Valley, and Las Posas Valley Basins were formerly subbasins of Ventura Central (DWR, 1980) ah: Nitrite pollution in the groundwater of the Sunland-Tujunga area currently precludes direct MUN uses. Since the ground water in this area can be treated or blended (or both), it retains the MUN designation ai: Raymond Basin was formerly a subbasin of San Gabriel Valley and Monk Hill subbasin is now part of San Fernando Valley Basin (DWR, 2003). The Main San Gabriel Basin was formerly separated into Eastern and Western areas. Since these areas had the same beneficial uses as Puente Basin all three areas have been combined into San Gabriel Valley. Any ground water upgradient of these areas is subject to downgradient beneficial uses and objectives, as explained in Footnote ac. aj: These areas were formerly part of the Russell Valley Basin (DWR, 1980). ak: Ground water in the Conejo-Tierra Rejada Volcanic Area occurs primarily in fractured volcanic rocks in the western Santa Monica Mountains and Conejo Mountain areas. These areas have not been delineated on Fig. 1-9. al: With the exception of ground water in Malibu Valley (DWR Basin No. 4-22) ground waters along the southern slopes of the Santa Monica Mountains are not considered to comprise a major basin and accordingly have not been designated a basin number by DWR

am: DWR has not designated basins for ground waters on the San Pedro Channel Islands.

State MCLs for inorganic chemicals (Title 22 Metals) and their potential health effects are listed in Table 4-1. The EPA MCLs are listed for informational purposes but are not used to describe groundwater quality in this report. State and EPA Primary MCLs for radionuclides are listed in Table 4-2.

The Basin Plan also states that groundwater shall not contain "taste or odor-producing substances" that "cause nuisance or adversely affect beneficial uses." These are known as secondary MCLs (SMCLs) (Table 4-3). SMCLs do not pose a threat to human health and are set to a level at which most people will physically notice their presence in drinking water. Secondary MCLs assist in managing drinking water for aesthetic considerations (taste, odor and color) and are enforceable standards in California.

Primary Contaminants	Chemical Formula	EPA MCL ¹ (mg/L) ²	CCR, Title 22 MCL (mg/L)	Potential Health Effects
Aluminum	AI	not established	1.0	Unknown. Some studies show exposure to high levels may cause Alzheimer's, but other studies show this not to be true.

Table 4-1: Primary maximum contaminant levels for Title 22 metals

Primary Contaminants	Chemical Formula	EPA MCL ¹ (mg/L) ²	CCR, Title 22 MCL (mg/L)	Potential Health Effects
Antimony	Sb	0.006	0.006	Increase in blood cholesterol; decrease in blood sugar
Arsenic	As	0.01	0.01	Skin damage or problems with circulatory systems and potential increased risk of developing cancer.
Asbestos	various	7 MFL ³	7 MFL	Increased risk of developing benign intestinal polyps.
Barium	Ba	2	1	Increase in blood pressure.
Beryllium	Be	0.004	0.004	Intestinal lesions.
Cadmium	Cd	0.005	0.005	Kidney damage.
Chromium	Cr	0.1	0.05	Allergic dermatitis.
Copper	Cu	1.3	1.3	<u>Short term exposure</u> : Gastrointestinal distress. <u>Long term exposure</u> : Liver or kidney damage
Cyanide (as free cyanide)	CN⁻	0.2	0.15	Nerve damage or thyroid problems.
Fluoride	F-	4	2	Bone disease (pain and tenderness of the bones); Children may get mottled teeth.
Lead⁴	Pb	0.015	0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities. <u>Adults</u> : Kidney problems; high blood pressure.
Mercury	Hg	0.002	0.002	Kidney damage.
Nickel	Ni	not established	0.1	Allergic contact dermatitis most common.
Nitrate (as Nitrogen) NO ₃ -	N	10	10	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.
Nitrate ⁵	NO3-	Listed as Nitrate-N	45	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.
Nitrite (as Nitrogen) NO ₂ -	N	1	1	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.

Primary Chemical EPA MCL ¹ CCR, Contaminants Formula (mg/L) ² MCL Potential Health Effects							
SeleniumSe0.050.05Hair or fingernail loss; numbness in fingers or toes; circulatory problems.							
ThalliumTI0.0020.002Hair loss; changes in blood; kidney, intestine, or liver problems.							
 ¹MCL = Maximum Contaminant Level. ²mg/L = milligrams per liter. ³MFL = Million fibers per liter, with fiber length >10 microns. ⁴Regulatory action level. 							
⁵ CCR, Title 22 standard for Nitrate reported as NO ₃							

Table 4-2: Primary maximum contaminant levels for radionuclides	e 4-2: Primary maximum contaminant level	is for radionuclides	;
---	--	----------------------	---

Radionuclide	Chemical Formula	CCR, Title 22 MCL ¹	EPA MCL	Potential Health Effects
Gross Alpha particle activity (excluding radon and uranium)	none	15 pCi/L	15 pCi/L ²	
Gross Beta particle activity	none	50 pCi/L 4 millirem/yr	4 millirem/yr ³	
Radium-226	Ra-226	5 pCi/L	5 pCi/L ⁴	
Radium-228	Ra-228	5 pCi/L	combined with Radium-226	Toxic kidney effects, risk of cancer.
Strontium-90	Sr	8 pCi/L	covered under gross beta	
Tritium	3H	20,000 pCi/L	covered under gross beta	
Uranium	U	20 pCi/L	30 µg/L⁵ (~20 pCi/L)	

¹ MCL = Maximum Contaminant Level.

 2 pCi/L = picocurie per liter. One pCi is one trillionth of a Curie, 0.037 disintegrations per second, or 2.22 disintegrations per minute.

³ Gross beta MCL is 4 millirems/year annual dose equivalent to the total body or any internal organ; Sr-90 MCL = 4 millirem/year to bone marrow; tritium MCL = 4 millirem/year to total body.

⁴ EPA MCLs combine radium-226 and radium-228.

 5 µg/L = micrograms per liter, can be converted to pCi/L by multiplying by 0.67

Secondary Contaminants	Chemical Formula	EPA MCL ¹ (mg/L) ²	CCR, Title 22 MCL (mg/L)	Noticeable Effects
Aluminum	AI	0.5 to 0.2	0.2	Colored water.
Chloride	Cl-	250	250	Salty taste.
Color ³		15 ³	15	Visible tint.
Copper	Cu	1.0	15	Metallic taste; blue-green staining.
Corrosivity			not established	Metallic taste; corroded pipes/ fixtures staining.
Fluoride	F⁻	2.0	not established	Tooth discoloration
Foaming Agents		0.5	0.5	Frothy, cloudy; bitter taste; odor.
Iron	Fe	0.3	0.3	Rusty color; sediment; metallic taste; reddish or orange staining.
Manganese	Mn	0.05	0.05	Black to brown color; black staining; bitter metallic taste.
Odor ⁴		3 TON⁴	3 TON	"Rotten-egg" smell, musty or chemical smell.
рН		6.5-8.5	not established	Low pH: bitter metallic taste; corrosion. <u>High pH</u> : slippery feel; soda taste; salt deposits.
Silver	Ag	0.1	0.1	Skin discoloration; graying of the white part of the eye.
Specific Conductance ⁵		not established	900 ⁵	Unpleasant taste or odor; gastrointestinal distress.
Sulfate	SO4 ²⁻	250	250	"Rotten-egg" smell, iron and steel corrosion or "black water"; can discolor silver, copper and brass utensils.
Total Dissolved Solids (TDS)		500	200	Hardness; deposits; colored water; staining; salty taste.
Zinc	Zn	5.0	5.0	Metallic taste.

Table 4-3: Secondary Maximum Contaminant Levels

 2 mg/L = milligrams per liter. 3 Units are in color numbers. 4 Units are in TON = Threshold Odor Number

⁵ Units are in Siemens per centimeter = S/cm.

5.0 **Current Sampling Results by Basin**

This section presents general interpretations of the groundwater quality data for each basin sampled this year. Data interpretation is limited to the samples collected by County staff, unless otherwise noted. This annual report includes a summary table of water quality analyses for nitrate, TDS, sulfate, chloride, and boron for each basin. These mineral constituents have specific numerical objectives that vary between each basin and in some cases for localized areas within a basin. Presentation of the data in this format allows for comparison with the numerical mineral quality objectives outlined in **Table 5-1** of the Basin Plan.

Table 5-1: Example of summary table.								
Nitrate as NO3 (mg/L)TDS (mg/L)Sulfate (mg/L)Chloride (mg/L)Boron (mg/L)								
Primary MCL 45 none none none none								
Secondary MCL	none	500	250	250	none			
Notes: 1. mg/L = milligram 2. ND = not detected 3. Bold numbers in	ed	n above primary o	r secondary MCL.					

The Piper Diagram (**Figure E-1**) shows water quality for all wells sampled in the County this year. Countywide there is moderate variation in water quality; calcium is the dominant cation and sulfate is the dominant anion. The most common water type is calcium sulfate.

Arroyo Santa Rosa Valley Basin (DWR Basin No. 4-007)

The water-bearing units of the Arroyo Santa Rosa Basin occupy almost the entire area beneath the Santa Rosa Valley. The area west of the Bailey Fault is generally considered hydrogeologically separate from the area east of the fault, although some leakage across the fault does occur (Camrosa, 2013). The location of the fault is inferred primarily from water well data (Camrosa, 2013). Depth to water-bearing material is approximately 50 feet below ground surface (bgs). The water-bearing units west of the fault are confined and those located east of the fault are unconfined. The degree of groundwater movement across the fault is not clearly understood. The main water-bearing units in the basin consist of alluvium and parts of the San Pedro Formation, which can reach a thickness of up to 700 feet in the eastern portion of the basin. The major hydrologic features are the Conejo Creek and its tributary, Arroyo Santa Rosa, which drain surface waters westward toward the Pacific Ocean.

The basin is dominated by an east-trending syncline that folds the San Pedro and Santa Barbara Formations, directing water into the more permeable San Pedro Formation. The Santa Rosa fault zone places the less permeable Sespe and Topanga Formations against the San Pedro Formation, creating a barrier to groundwater flow into the basin from the north and is likely responsible for the difference in water levels in the western part of the basin (CSWRB, 1956).

Land use in the area overlying the basin consists principally of agriculture and rural residential development on large lots. Most of the area overlying the basin is unsewered with a high number of individual septic systems. Sources of nitrate to groundwater include septic systems, agricultural fertilization, and animal keeping. A large portion of recharge to the basin is discharge from the City of Thousand Oaks' Hill Canyon Wastewater Treatment Plant. There are 84 water supply wells in the Arroyo Santa Rosa Valley Basin of which 36 are active. The Piper diagram (Figure E-2) shows low variation in water quality of wells sampled in 2020. There is no dominant cation, but the samples plot close to the magnesium cation type. The dominant anion for four samples is bicarbonate anion type; the remainder have no dominant anion. All nine water samples are magnesium bicarbonate type.

Selected water quality results are presented in Table 5-2. Water from four of the eight wells sampled have nitrate concentrations higher than the primary MCL. All eight wells have TDS concentrations above the secondary MCL ranging from 590 to 990 mg/l. Chloride concentrations in eight wells are above the level that can impair agricultural beneficial uses for sensitive plants. However, they are not above the primary MCL. Three samples were analyzed for Title 22 metals. None were above the primary MCL.

The Piper diagram in **Figure E-3** shows a comparison of groundwater chemistry between Tierra Rejada Basin and the Arroyo Santa Rosa Basin. The water chemistry is similar but with more variation in the Tierra Rejada samples. Figure 5-1 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

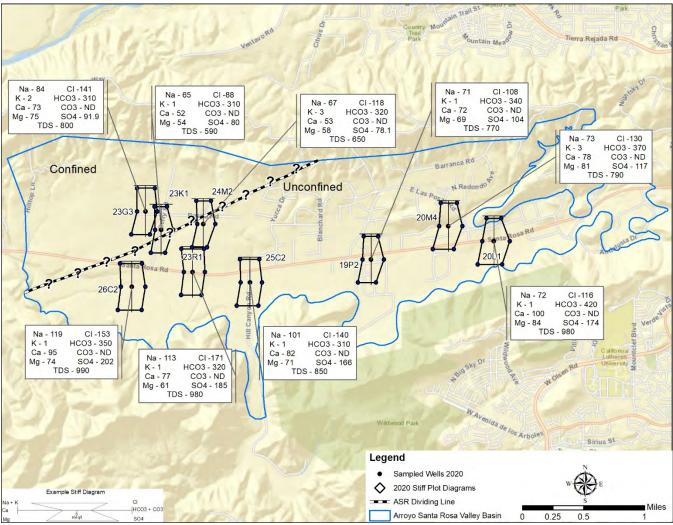
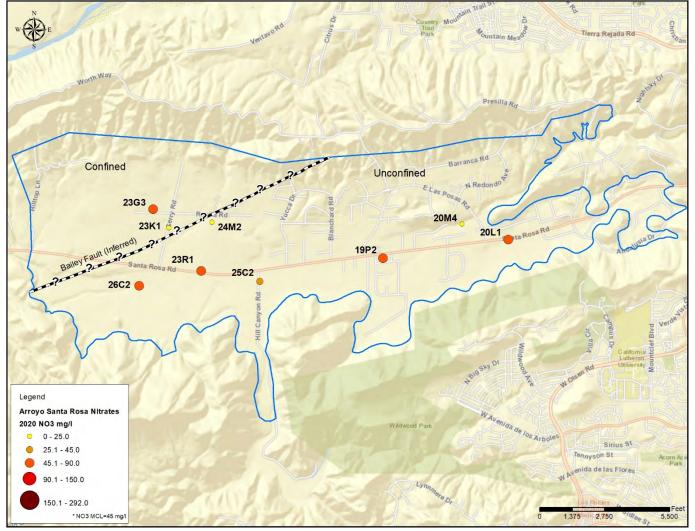
Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
19P2	11/12/2020	61.8	770	104	108	0.2
20L1	11/19/2020	76.4	980	174	116	0.2
20M4	11/12/2020	23.4	790	117	130	0.1
23G3	11/12/2020	77.7	800	91.9	141	0.2
23K1	11/19/2020	17.7	590	80	88	0.1
23R1	10/9/2020	78.2	980	185	171	0.3
24M2	11/19/2020	8.4	650	78.1	118	0.1
25C2	11/12/2020	44.7	850	166	140	0.3
26C2	11/12/2020	57.4	990	202	153	0.3
Notes:	1	1	1	1		1

Table 5-2: Selected water quality results for the Arroyo Santa Rosa Valley Basin.

1. mg/L = milligrams per liter

2. ND = not detected

3. Bold numbers indicate concentration above primary or secondary MCL

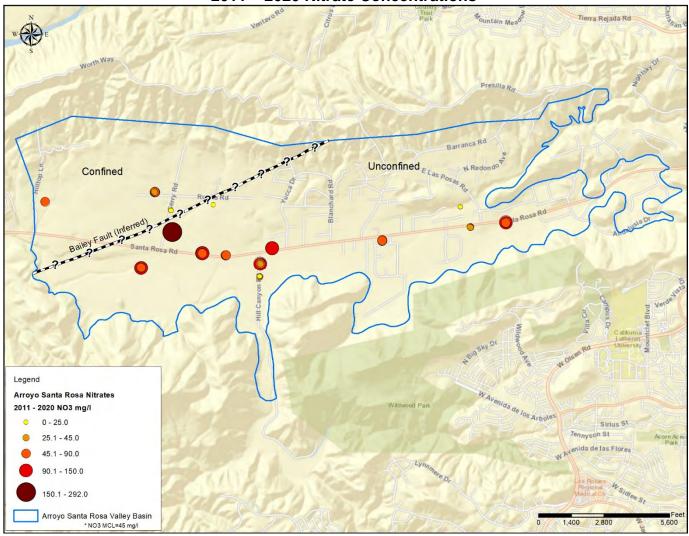

Figure 5-1: Arroyo Santa Rosa Basin wells sampled with Stiff diagrams and selected inorganic constituents.

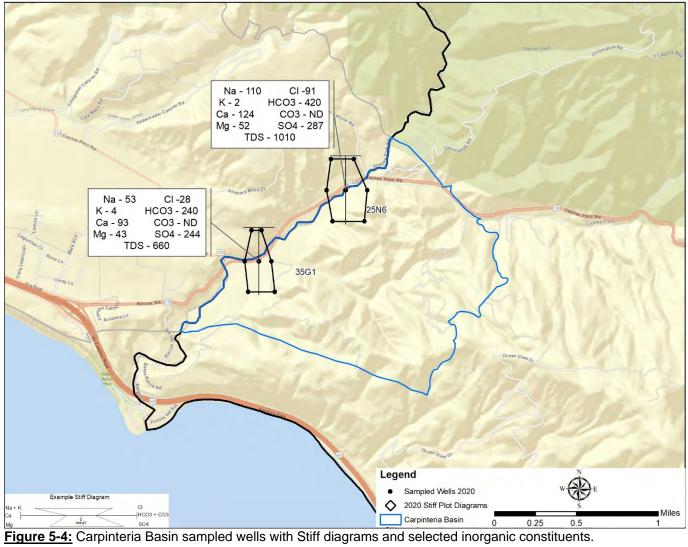
Figure 5-2 shows the geographic distribution of wells sampled in 2020, with graduated symbols representing nitrate concentrations. **Figure 5-3** shows nitrate results for 2011 through 2020 in the same manner. The Arroyo Santa Rosa Basin has been nitrate-impacted for many years. Current sampling results exceed the state MCL of 45 mg/L in four of five wells. Management practices in the Ventura County Non-Coastal Zoning Ordinance (NCZO) were established to mitigate nitrate impacts. These include limiting the number of large animals kept and restricting on-site septic systems. Camrosa blends well water pumped from the basin with imported water to reduce nitrate concentrations below the MCL. One groundwater sample collected this year had a nitrate (NO₃) concentration above 100 mg/L, less than historic nitrate concentrations which were as high as 292 mg/L.

ARROYO SANTA ROSA VALLEY BASIN 2020 Nitrate Concentrations

Figure 5-2: Arroyo Santa Rosa Basin nitrate concentrations for 2020.

ARROYO SANTA ROSA VALLEY BASIN 2011 – 2020 Nitrate Concentrations

Figure 5-3: Arroyo Santa Rosa nitrate concentrations for 2011 – 2020.


Carpinteria Basin (DWR Basin No. 3-018)

Previous annual reports used the North Coast Basin boundary (a County of Ventura-defined area) for wells in the very western extent of the County. DWR Bulletin 118 designates this part of the County as the Carpinteria Basin and in the DWR designation is used in this annual report. The Ventura County portion of the basin consists of narrow, thin strips of permeable sediments and marine terrace deposits along the coastline from Rincon Creek to just northwest of the Ventura River. There are 18 water supply wells in the Ventura County portion of the basin, of which only 4 are active and primarily located in the northwestern area along Rincon Creek. Water samples were collected from two wells at the northwestern end of the Ventura County portion of the basin. The Piper diagram in **Figure E-4** shows little variation in the water quality of wells sampled in 2020. There is no dominant cation, though both samples plot close to the calcium type. There is no dominant anion. One sample plots close to the sulfate type and one plots close to the bicarbonate type. The water in one sample is calcium bicarbonate and the other is calcium sulfate type.

Both samples had TDS concentrations and one sample had sulfate concentration above the secondary MCL (**Table 5-3**). **Figure 5-4** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. No samples were analyzed for Title 22 metals.

Well No.	Date Sampled	NO3		Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)			
25N6	9/01/2020	10.5	1010	287	91	0.3			
35G1	9/01/2020	ND	660	244	28	0.4			
	Notes: 1. mg/L = milligrams per liter 2. ND = not detected								

Table 5-3: Selected water quality results for the Carpinteria Basin.

Conejo Basin (DWR Basin No. 4-010)

The Conejo Basin has few active water wells available for sampling. The depth to groundwater averages about 50 feet bgs. The water-bearing units in the basin are Quaternary alluvium and the Modelo, Topanga and Conejo Formations. The quaternary alluvium is generally only a few feet thick except near Newbury Park and Thousand Oaks where it can reach up to 60 feet in thickness; however, the alluvium is not the main water-bearing unit in the basin. The Miocene age Topanga and Conejo Formations are coeval and intercalated, or the same age and interbedded. Within the Conejo Basin area, the Topanga formation contains sandstone, conglomerate and shale. The Conejo Formation consists of volcanic tuff, debris flow, and basaltic flow and breccia deposits that reach 13,000 feet thick. The high porosity of the fractured basaltic flows allows production from these units. There are approximately 432 wells in the Conejo Basin of which 61 are active water supply wells. Two wells from within the basin and one well from an area just outside the basin were sampled in 2020. The Piper diagram in **Figure E-22** shows little variation in the water quality of wells sampled in 2020. Magnesium is the dominant cation in one sample with no dominant cations in the others, however, they plot close to magnesium. There is no dominant cation in any sample though one plots close to bicarbonate and the other plot close to sulfate. The water in one sample is magnesium bicarbonate type and the others are calcium sulfate type.

All three samples had TDS and two had sulfate concentrations above the secondary MCL (**Table 5-4**). **Figure 5-5** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. One sample was analyzed for Title 22 metals. None of the constituents were above the primary MCL.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
8G2	12/17/2020	ND	1330	433	119	0.1
9N1	12/17/2020	ND	1450	446	154	0.2
3J1 (outside basin)	12/17/2020	4	900	179	159	0.2
Notes:	÷	·	•	•	•	

 Table 5-4: Selected water quality results for the Conejo Basin.

1. mg/L = milligrams per liter

2. ND = not detected

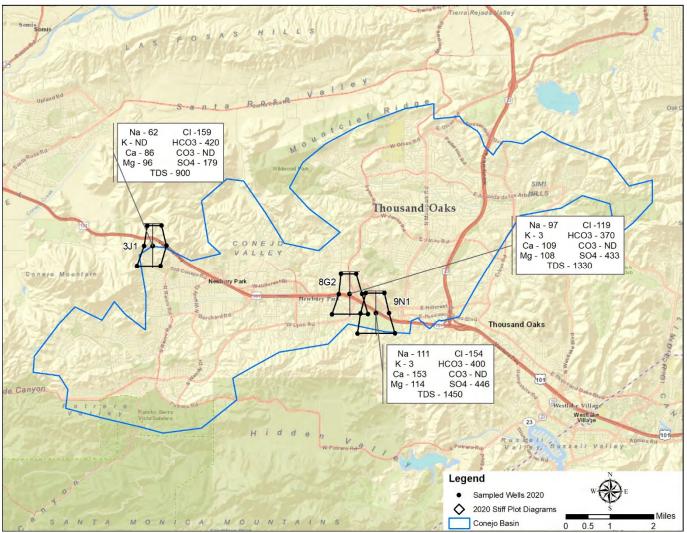


Figure 5-5: Conejo Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Cuddy Ranch Area Basin (DWR Basin No. 5-083)

The Cuddy Ranch Area Basin is in the northeastern part of Ventura County near the boundary of Kern County. Two faults contribute to the formation of the basin. The east-west trending San Andreas fault zone and Tecuya Mountain bound the north portion. The southwest trending Big Pine Fault and associated splays bound and underlie the southern portion of the basin. The portion of the basin adjacent to the Big Pine Fault zone is locally known as Little Cuddy Valley. Groundwater sampling has been limited to the Little Cuddy Valley portion of the basin. Water-bearing units consist of recent alluvial sand and gravel overlying shallow bedrock, permeable sands and gravels in the Quaternary and Tertiary sandstones, and highly fractured igneous or metamorphic rocks. Depth to water-bearing material is approximately 20 to 30 feet. Historically, groundwater quality has been considered very good. There are approximately 25 water supply wells in the Little Cuddy Valley Basin of which 18 are active. No wells were sampled in this basin in 2020.

Figure 5-6 shows a map of the Cuddy Ranch Area Basin.

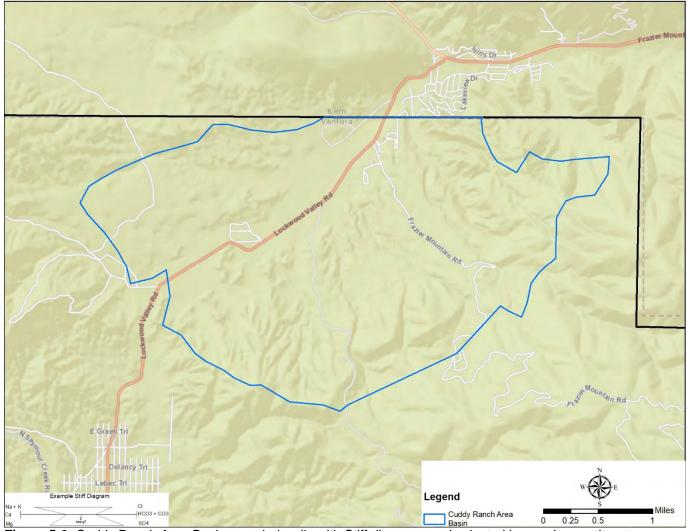


Figure 5-6: Cuddy Ranch Area Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Cuyama Valley Basin (DWR Basin No. 3-013)

The Cuyama Valley Basin is in a remote area in northwestern Ventura County. The map in Figure 5-7 shows only the portion of the basin that is in Ventura County. There are approximately 137 water supply wells in the Basin, of which 102 are active. Depth to the main water-bearing unit varies between 40 to 170 feet bgs. One well was sampled in the basin in 2020. The Piper diagram in Figure E-24 shows low variability in water quality of the wells sampled in 2020. Calcium is the dominant cation in the sample. Sulfate is the dominant anion in the sample. The water in the sample is calcium sulfate type. One water sample was analyzed for Title 22 metals. No constituents were above the MCL (Table 5-5)

The sample had TDS and sulfate concentrations above the secondary MCL (Table 5-5). Figure 5-7 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. The sample was analyzed for Title 22 metals. None of the constituents were above the primary MCL.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
15P1	12/30/2020	2.4	2030	1160	8	0.2
Notes:						

Table 5-5: Selected water quality results for the Cuyama Valley Basin

- 1. mg/L = milligrams per liter
- 2. ND = not detected

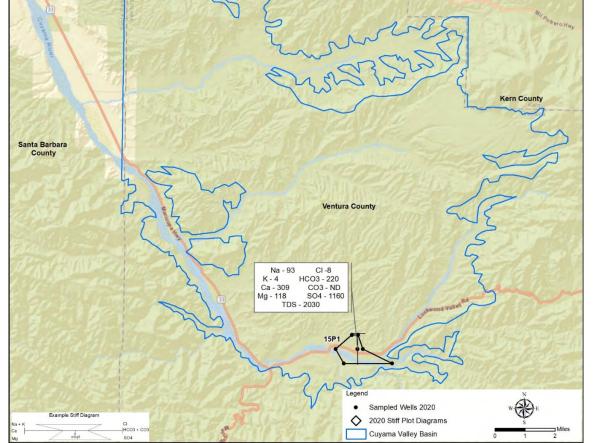


Figure 5-7: Cuyama Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Santa Clara River Valley Basin – Fillmore Subbasin (DWR Basin No. 4-004.05)

The Fillmore Subbasin, though small in geographic area, has a total aquifer thickness of almost 8,000 feet in some locations. Despite the depth of the subbasin, County records indicate that water wells are generally no deeper than 950 feet. Water quality can vary greatly depending on the depth of a well. Shallow groundwater is generally younger and recharged by river flows. Deeper groundwater is older and has acquired its aqueous chemistry through dissolution of constituents from the surrounding lithology. There are approximately 610 water supply wells in the Fillmore Subbasin, of which 446 are active. Historically, nitrate concentrations have been elevated, but only one of the thirteen wells sampled this year showed elevated nitrate concentration relative to the primary MCL (**Table 5-6**). The Piper diagram in **Figure E-5** shows moderate variability in water quality of wells sampled in 2020. The dominant cation in five samples is calcium with no dominant cation for the remainder of the samples but the data plots closest to a calcium cation type. Bicarbonate is the dominant anion in one sample. Sulfate is the dominant anion for eleven samples. One sample has no dominant anion but plots close to sulfate. Two water samples are calcium bicarbonate type and the remaining eleven samples are calcium sulfate type.

TDS concentrations in water from all thirteen wells sampled this season range from 690 to 1,370 mg/L and all thirteen exceeded the secondary MCL. Twelve water samples exceeded the sulfate secondary MCL and water from one well exceeded the manganese secondary MCL. The water in one well had nitrate concentrations greater than the MCL for drinking water. Water from one well was analyzed for Title 22 metals. All Title 22 metals concentrations were below the MCL for drinking water. Water quality tends to degrade in the southeastern portion of the subbasin in the vicinity of the Oak Ridge fault. **Figure 5-8** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate. Water samples from all wells sampled in the Fillmore, Santa Paula and Piru subbasins were compared in a Piper diagram in **Figure E-14**. The Piper diagram shows moderate variability and the data from the three subbasins show little variation. The water in two wells is calcium bicarbonate type and eleven wells are calcium sulfate type.

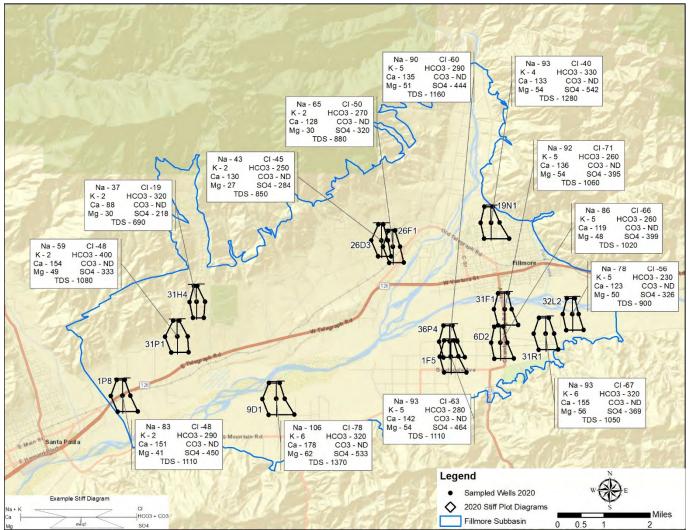

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
6D2	8/31/2020	15.4	1020	399	66	0.5
1F5	08/27/2020	21.1	1110	464	63	0.6
9D1	8/31/2020	39.4	1370	533	78	0.8
1P8	8/26/2020	18.5	1110	450	48	0.6
19N01	9/03/2020	2.7	1280	542	40	0.4
31F1	8/27/2020	16	1060	395	71	0.5
31R1	12/01/2020	16.8	1050	369	67	0.6
32L2	12/01/2020	10.7	900	326	56	0.6
26D03	9/03/2020	42	850	284	45	0.2
26F01	8/26/2020	22.6	880	320	50	0.9
31H04	9/03/2020	17.5	690	218	19	0.1

Table 5-6: Selected water quality results for the Fillmore Subbasin.

Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
8/26/2020	75.3	1080	333	48	0.1
08/27/2020	28	1160	444	60	0.6
	8/26/2020	Date Sampled NO3 (mg/L) 8/26/2020 75.3	Date Sampled NO3 (mg/L) TDS (mg/L) 8/26/2020 75.3 1080	Date SampledNO3 (mg/L)TDS (mg/L)Sulfate (mg/L)8/26/202075.31080333	Date SampledNO3 (mg/L)IDS (mg/L)Sulfate (mg/L)Chloride (mg/L)8/26/202075.3108033348

1. mg/L = milligrams per liter

2. ND = not detected

Figure 5-8: Fillmore Subbasin wells sampled with Stiff diagrams and selected inorganic constituents.

Las Posas Valley Basin (DWR Basin No. 4-008)

In previous annual reports the Las Posas Valley area was divided into three basins (east, west and south) using boundaries delineated by the County of Ventura. The California DWR Bulletin 118 basin boundaries designate one basin boundary for the whole valley. The geology of the basin causes differences in water levels and water quality between the east and the west areas of the basin. Because of this and other sustainable management factors, two management areas have been defined in the GSP for the Fox Canyon Groundwater Management Agency (FCGMA). The West Las Posas Management Area (WLPMA) encompasses what was formerly the West Las Posas Basin area and the East Las Posas Management Area (ELPMA) encompasses the area that was formerly the East Las Posas Basin and the South Las Posas Basin. The management area boundaries are defined in the GSP for the FCGMA.

Las Posas Valley Basin – East Las Posas Management Area

Water-bearing units of the ELPMA consist of Quaternary and Pleistocene alluvial deposits of varying thickness. Water-bearing deposits consist primarily of sand or a mixture of sand and gravel identified as the Fox Canyon Aquifer and is the basal member of the San Pedro Formation (Stokes, 1971). The Fox Canyon Aquifer is generally considered to be confined in the ELPMA. Data indicate the Fox Canyon Aquifer receives recharge from leakage from overlying aquifers (FCGMA 2007 Basin Management Plan) and the exact hydrogeologic continuity is not well understood. The Somis fault acts as a hydrogeologic boundary between the ELPMA and WLPMA. Depth to the upper water-bearing unit is approximately 120 to 150 feet bgs and 530 to 580 feet bgs to the lower water-bearing unit. There are approximately 402 water supply wells in the ELPMA, of which 164 are active wells.

The Piper diagram in **Figure E-6** shows moderate variability in water quality between 21 wells sampled in 2020. Calcium is the dominant cation in twelve samples and there are no dominant cations in the other samples. Sulfate is the dominant anion in seven samples, bicarbonate is the dominant anion in nine samples and the five remaining samples have no dominant anion. The water in ten wells is calcium bicarbonate type, calcium sulfate in seven wells, sodium bicarbonate in one well, and sodium sulfate in three wells. Chloride concentrations in eight water samples are above the level that may cause impairment of agricultural beneficial uses for sensitive plants. The two southwestern wells have the highest chloride concentration. None of the wells have chloride concentrations that exceed the primary MCL for drinking water. The remainder have good water quality with TDS ranging between 300 and 1,700 mg/L (**Table 5-7**).

The Piper diagram in **Figure E-21** shows a comparison between the ELPMA and WLPMA water chemistry. There is moderate variability in the water quality of the combined areas. Water samples from both management areas are in two main groups: those with sulfate as the dominant anion and plot as calcium sulfate type, and those with no dominant anion but plot near the bicarbonate type and calcium bicarbonate type. The water chemistry of both management areas is fairly similar, although based on the sharp change in water level between the ELPMA and WLPMA, the degree of hydrogeologic connection appears to be limited.

TDS was above the secondary MCL in ten wells, ranging from 300 to 1,700 mg/L (**Table 5-7**). Water from three wells had nitrate concentrations above the primary MCL. Nine samples had sulfate concentrations above the secondary MCL and four samples had manganese concentrations above the MCL. Water from three wells was analyzed for Title 22 metals and all constituents were below the MCLs. **Figure 5-9** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
4F1	10/28/2020	ND	1010	362	89	0.1
36P1	10/27/2020	24.5	310	39.2	19	ND
28J4	10/27/2020	54.4	560	117	44	0.2
29K8	10/8/2020	16.2	480	130	28	0.1
4B1	10/28/2020	ND	440	147	16	ND
9Q7	9/29/2020	24.5	1700	664	194	0.6
16B6	10/21/2020	3.7	1370	532	177	0.7
7D2	10/21/2020	18.7	1140	405	150	0.7
34G1	10/28/2020	ND	410	126	11	ND
30E6	10/8/2020	5.5	300	67.4	13	ND
29K6	10/8/2020	72.5	390	33.6	42	ND
7B2	10/8/2020	6.5	1270	461	147	0.8
1Q1	10/8/2020	28.1	1230	408	141	0.7
10G1	10/8/2020	56.8	1510	529	160	0.7
26H1	10/28/2020	6.4	370	85.1	30	ND
4R3	9/29/2020	ND	1440	561	160	0.4
10D2	10/23/2020	36.2	450	87.6	48	ND
6F1	10/23/2020	16.7	1080	377	128	0.6
31B1	10/28/2020	ND	450	145	27	0.1
3H1	10/30/2020	8.9	370	90.4	27	ND
1B2	10/30/2020	0.6	310	73.1	51	0.2

 Table 5-7: Selected water quality results for the Las Posas Valley Basin – East Las Posas Management Area.

1. mg/L = milligrams per liter 2. ND = not detected



Figure 5-9: Las Posas Valley Basin EMA, sampled wells with Stiff diagrams and selected inorganic constituents.

Las Posas Valley Basin – West Las Posas Management Area

There are approximately 162 water supply wells in the WLPMA of the Las Posas Valley Basin, of which 88 are active. Twenty four wells within the WLPMA were sampled in 2020. The Piper diagram in **Figure E-7** shows moderate variability in water quality. Calcium is the dominant cation in three samples, sodium is the dominant cation in two samples and there is no dominant cation in the remaining samples. Bicarbonate is the dominant anion in six samples, and sulfate is the dominant anion in nine samples. There is no dominant anion in the remaining samples. The water in nine wells is calcium bicarbonate type, three are sodium bicarbonate type, four are sodium sulfate type, and eight are calcium sulfate type.

TDS was above the secondary MCL in 21 wells, ranging from 330 to 2,140 mg/L (**Table 5-8**). Water from four wells had nitrate concentrations above the primary MCL. Eleven samples had sulfate concentrations above the secondary MCL and 17 samples had manganese concentrations above the MCL. Water from eight wells was analyzed for Title 22 metals. Selenium concentration was above the MCL for drinking water in two samples. All other constituents were below the MCLs. **Figure 5-10** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
6J1	10/30/2020	ND	620	209	16	ND
6R1	9/29/2020	ND	580	195	17	0.1
7R3	9/29/2020	ND	330	98	16	ND
8F1	9/29/2020	ND	340	96.5	14	ND
17L1	10/1/2020	19.5	1400	524	151	0.5
4Q2	10/7/2020	44.8	610	147	62	0.2
8H3	10/19/2020	14.8	730	205	66	0.3
9N1	10/21/2020	2	890	318	65	0.4
10G3	10/7/2020	3	560	143	49	0.3
10Q4	10/23/2020	ND	780	276	34	0.2
11A2	10/7/2020	181	1440	421	122	0.2
11A3	10/7/2020	0.4	600	181	34	0.2
12H2	10/7/2020	13.2	520	137	52	0.1
13A1	10/21/2020	ND	430	159	14	0.1
15M4	10/7/2020	29.2	1230	477	96	0.3
16J3	10/7/2020	ND	720	238	52	0.3

Table 5-8: Selected water quality results for the Las Posas Basin - West Las Posas Management Area.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
17F5	10/7/2020	0.9	1050	423	62	0.6
17N3	9/9/2020	11.2	970	427	47	0.7
18H1	10/21/2020	132	2140	833	154	0.6
18H14	10/21/2020	ND	950	358	48	0.4
20A2	11/10/2020	1	910	356	48	0.6
32H4	10/23/2020	ND	990	388	24	0.2
35P2	10/7/2020	64.1	790	188	81	0.2
36Q1	10/8/2020	73.8	690	145	89	0.2
lotes:	-1	1	1	1	1	1

mg/L = milligrams per liter
 ND = not detected
 Bold numbers indicate concentration above primary or secondary MCL

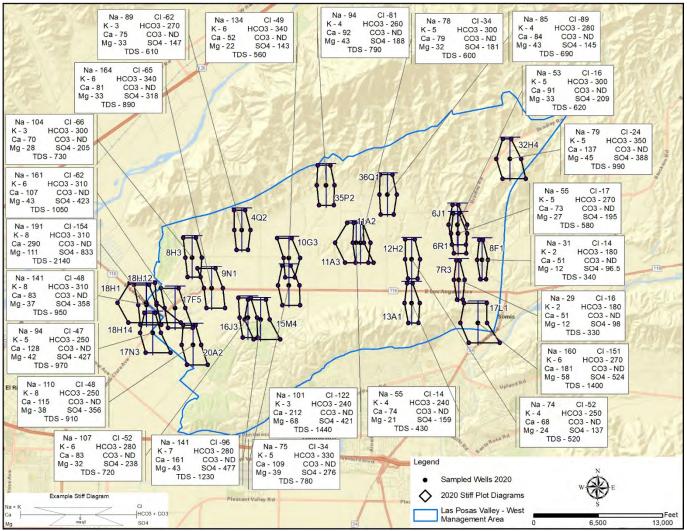


Figure 5-10: Las Posas Valley Basin WMA sampled wells with Stiff diagrams and selected inorganic constituents.

Lockwood Valley Basin (DWR Basin No. 4-017)

The Lockwood Valley Basin groundwater quality ranges from good to poor. The Basin covers a geographic area of 34.1-square miles. Water-bearing units consist of Quaternary alluvium, Tertiary sedimentary rocks and Quaternary stream channel alluvium. The Tertiary sedimentary rocks have high silt and clay content, resulting in low permeability. The alluvial material consists primarily of silty and clayey sands, gravels and boulders and has a much higher permeability than the underlying Tertiary sedimentary rocks. The Quaternary stream channel alluvium, prevalent near existing stream channels, contain a smaller percentage of clays and silts and wells penetrating this material tend to be higher yielding producers. Depth to water-bearing units range from 55 to 60 feet bgs. There are approximately 291 water supply wells in the Lockwood Valley Basin, of which 248 are active. One well was sampled in the basin in 2020. The Piper diagram in **Figure E-25** shows sodium is the dominant cation and bicarbonate is the dominant anion. The sample is sodium bicarbonate type. One water sample was analyzed for Title 22 metals and gross alpha. All constituents were below the MCL for drinking water.

The sample had TDS concentration above the secondary MCL (**Table 4-9**). **Figure 5-11** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
33R3	12/30/2020	6.4	560	178	16	0.7
Notes: 1. mg/L = millio 2. ND = not de	tected					

 Table 5-9:
 Selected water quality results for the Lockwood Valley Basin.

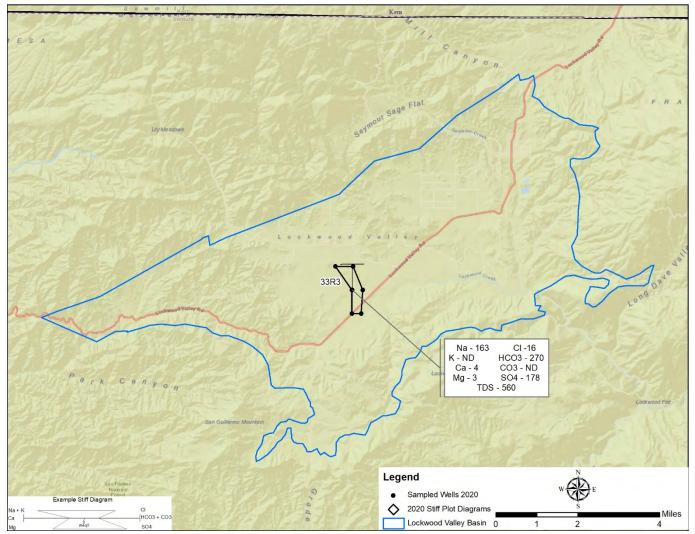


Figure 5-11: Lockwood Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents

Santa Clara River Basin – Mound Subbasin (DWR Basin No. 4-004.03)

The water-bearing units of the Mound Subbasin consist of Quaternary alluvium and the San Pedro Formation. These formations are divided into the Upper Aquifer System (UAS) and the Lower Aquifer System (LAS). The UAS consists of undifferentiated Holocene alluvium that make up the Oxnard Aquifer and older Pleistocene alluvium that makes up the Mugu Aquifer. The alluvium consists of silts and clays with lenses of sand and gravel, with a maximum thickness of 500 feet. The LAS predominantly consists of fine sands and gravels of the San Pedro Formation and extends as deep as 4,000 feet bgs. The upper part of the San Pedro formation consists of variable amounts of clay, silty clay and sand. A series of interbedded water-bearing sands in this unit are time equivalent to the Hueneme Aquifer of the Oxnard Subbasin. The lower part of the San Pedro Formation consists primarily of sand and gravel zones with layers of clay and silt and is equivalent to the Fox Canyon aquifer found in the Oxnard plain. Groundwater is generally unconfined in the alluvium and confined in the San Pedro Formation. Historic water quality data for the basin shows that water quality is generally better in the lower zone.

There are 85 water supply wells in the Mound Subbasin, of which 32 are active. Four wells were sampled in the basin in 2020. The Piper diagram in **Figure E-26** shows low variability in water quality of all the wells sampled this year. There is no dominant cation for any of the water samples. Sulfate is the dominant anion for all samples. Three samples are calcium sulfate and one is sodium sulfate type. Two water samples were analyzed for Title 22 metals. All Title 22 constituents were below the MCL for drinking water.

All samples had TDS and sulfate concentrations above the secondary MCL and three samples had elevated manganese. (**Table 5-10**). **Figure 5-12** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)			
13K3	9/2/2020	2.8	1250	476	75	0.6			
9K7	9/2/2020	ND	1120	470	68	0.4			
13F2	9/2/2020	ND	1080	400	65	0.6			
10N4	9/2/2020	10	1040	428	48	0.4			
Notes: 1. mg/L = millig	1. mg/L = milligrams per liter								

 Table 5-10:
 Selected water quality results for the Mound Subbasin.

2. ND = not detected

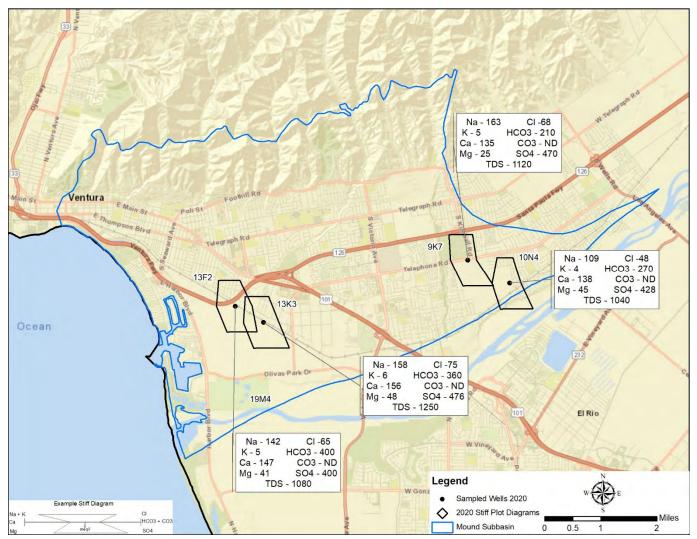


Figure 5-12: Mound Subbasin sampled wells with Stiff diagrams and selected inorganic constituents

Ojai Valley Basin (DWR Basin No. 4-002)

The aquifer system of the Ojai Valley Basin is considered unconfined except in the western end of the basin where a semi-confining to confining clay layer is present. Water quality in the basin is considered good. There are approximately 325 water supply wells in the basin, of which 189 are active. Depth to water-bearing units is generally 25 to 30 feet bgs. Piper diagram **Figure E-8** shows low variation of the water quality for fourteen wells sampled in 2020. Calcium is the dominant cation in eleven samples; sodium is the dominant cation in one sample; and the remaining samples have no dominant cation. Sulfate is the dominant anion in one sample, bicarbonate in two samples, chloride is the dominant anion in one sample and there is no dominant anion in the remaining samples. The water in one well is calcium chloride, one is sodium bicarbonate, five are calcium sulfate, and seven are calcium bicarbonate type.

Water from all fourteen wells had TDS concentrations above the secondary MCL. TDS concentrations range from 590 to 1,360 mg/L. The Sulfate concentration in two wells and the manganese concentration in two wells exceeded the secondary MCL. Water samples from two wells were analyzed for Title 22 metals. None of the constituents were above the primary MCL. **Figure 5-13** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for wells sampled in the Ojai Valley Basin.

Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
11/20/2020	0.4	590	162	23	ND
11/20/2020	ND	1360	143	360	ND
11/20/2020	26.4	690	211	31	ND
11/20/2020	48.3	640	211	27	ND
11/20/2020	39.4	790	177	81	ND
12/10/2020	33.6	650	205	26	ND
12/10/2020	20.2	720	236	42	ND
11/20/2020	20.3	680	200	20	ND
12/10/2020	36.9	760	225	27	ND
11/20/2020	0.8	690	188	37	ND
12/10/2020	5.4	920	308	47	ND
11/20/2020	ND	1010	366	50	ND
12/10/2020	27.8	670	206	30	ND
9/16/2020	33.7	720	206	24	ND
	11/20/2020 11/20/2020 11/20/2020 11/20/2020 11/20/2020 12/10/2020 12/10/2020 11/20/2020 12/10/2020 11/20/2020 12/10/2020 11/20/2020 12/10/2020 11/20/2020 12/10/2020 12/10/2020 12/10/2020 12/10/2020 12/10/2020	Date Sampled NO3 (mg/L) 11/20/2020 0.4 11/20/2020 ND 11/20/2020 26.4 11/20/2020 48.3 11/20/2020 39.4 12/10/2020 33.6 12/10/2020 20.2 11/20/2020 20.3 12/10/2020 36.9 11/20/2020 0.8 12/10/2020 5.4 11/20/2020 ND 12/10/2020 27.8	Date Sampled NO3 (mg/L) IDS (mg/L) 11/20/2020 0.4 590 11/20/2020 ND 1360 11/20/2020 26.4 690 11/20/2020 48.3 640 11/20/2020 39.4 790 12/10/2020 33.6 650 12/10/2020 20.2 720 11/20/2020 20.3 680 12/10/2020 36.9 760 11/20/2020 0.8 690 12/10/2020 5.4 920 11/20/2020 ND 1010 12/10/2020 27.8 670	Date Sampled NO3 (mg/L) IDS (mg/L) Suffate (mg/L) 11/20/2020 0.4 590 162 11/20/2020 ND 1360 143 11/20/2020 26.4 690 211 11/20/2020 48.3 640 211 11/20/2020 39.4 790 177 12/10/2020 33.6 650 205 12/10/2020 20.2 720 236 11/20/2020 20.3 680 200 12/10/2020 36.9 760 225 11/20/2020 0.8 690 188 12/10/2020 5.4 920 308 11/20/2020 ND 1010 366 11/20/2020 77.8 670 206	Date Sampled NO3 (mg/L) IDS (mg/L) Suifate (mg/L) Chloride (mg/L) 11/20/2020 0.4 590 162 23 11/20/2020 ND 1360 143 360 11/20/2020 26.4 690 211 31 11/20/2020 26.4 690 211 31 11/20/2020 26.4 690 211 27 11/20/2020 39.4 790 177 81 12/10/2020 33.6 650 205 26 12/10/2020 20.2 720 236 42 11/20/2020 20.3 680 200 20 12/10/2020 0.8 690 188 37 11/20/2020 0.8 690 188 37 11/20/2020 5.4 920 308 47 11/20/2020 ND 1010 366 50 12/10/2020 27.8 670 206 30

Table 5-11: Selected water quality results for the Ojai Valley Basin.

Notes

1. mg/L = milligrams per liter

2. ND = not detected

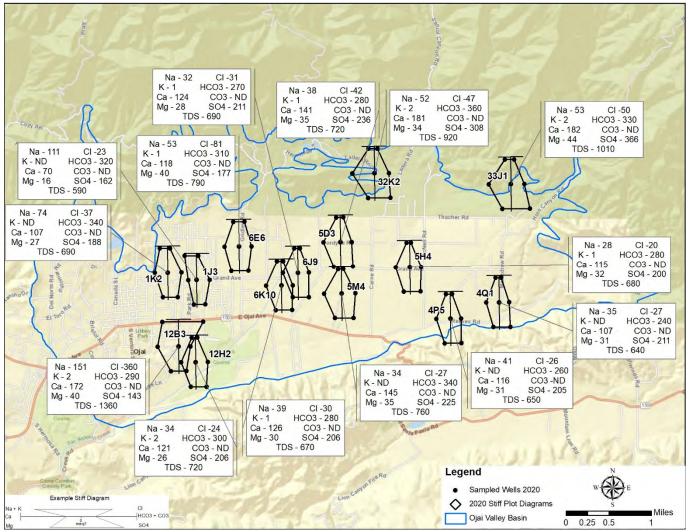


Figure 5-13: Ojai Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

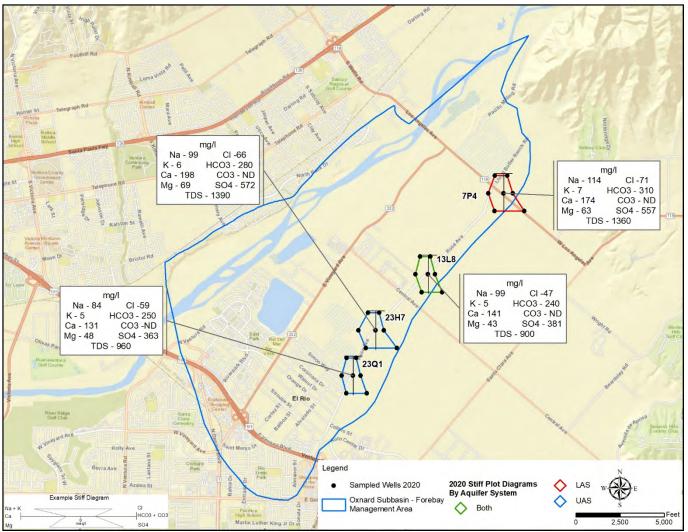
Santa Clara River Valley Basin – Oxnard Subbasin (DWR Basin No. 4-004.02)

Previous annual reports divided the Oxnard Subbasin into two separate basins. The Oxnard Plain Forebay and the Oxnard Plain Pressure Basin. DWR Bulletin 118 groundwater basin boundaries are used in this annual report and the Forebay is included within the boundary of the Oxnard Subbasin. Because of the difference in UAS geology between the Oxnard Plain Forebay and the Oxnard Plain Pressure Basin, the Forebay is separated as a management area within the Oxnard Subbasin. The Oxnard Subbasin is the largest and most complex of the groundwater basins in Ventura County and consists of the UAS and the LAS. There are approximately 1,179 water supply wells in the Oxnard Subbasin, of which 465 are active.

From shallowest to deepest, the UAS consists of the Perched/Semi Perched, Oxnard and Mugu aquifers. Only the Oxnard and Mugu Aquifers are sampled in the UAS. The LAS, from shallowest to deepest, consists of the Hueneme, Fox Canyon and Grimes Canyon aquifers. There are no wells perforated solely in the Grimes Canyon aquifer, therefore it cannot be sampled exclusively.

Forebay Management Area

The Forebay Management Area is the principal recharge area for the UAS and LAS of the Oxnard Subbasin. Depth to water-bearing units is generally 25 to 50 feet bgs. There are approximately 281 water supply wells in the Forebay Management Area, of which 101 are active wells. The Forebay Management Area generally has acceptable water quality except in the southern area where high nitrate concentrations are common. The northern area is predominantly agricultural with a few residential areas that still rely on individual septic systems. Four wells were sampled in 2020, two in the UAS, one in the LAS, and one screened across both the UAS and LAS. The Piper diagram in Figure E-28 shows some variability in water quality of the wells sampled this year. There is little difference between the upper and lower aquifers. Calcium is the dominant cation for the LAS sample. There is no dominant cation type for the other samples; sulfate is the dominant anion for all samples. The water in all samples is calcium sulfate type. One water sample was analyzed for Title 22 metals


All samples had TDS and sulfate concentrations above the secondary MCL. One sample had a nitrate concentration above the MCL and two samples had manganese concentrations above the secondary MCL. (Table 5-12). Figure 5-14 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Aquifer	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
7P4	10/19/2020	Hueneme / Fox Canyon / Grimes	ND	1360	557	71	0.6
13L8	11/12/2020	Mugu / Hueneme	ND	900	381	47	0.6
23Q1	11/20/2020	Oxnard	7.3	960	363	59	0.7
23H7	11/20/2020	Oxnard / Mugu	45.1	1390	572	66	0.7
Notes:							

Table 5-12: Selected water quality results for the Oxnard Subbasin Forebay Management Area.

1. mg/L = milligrams per liter

2. ND = not detected

Figure 5-14: Oxnard Subbasin Forebay Management Area sampled wells with Stiff diagrams and selected inorganic constituents. **Upper Aquifer System (UAS)**

Oxnard Aquifer

The Oxnard Aquifer is the shallowest of the confined aquifers and the most developed, based on the number of wells. Average depth to the main water-bearing unit is 80 feet bgs.

Eight wells were sampled from the Oxnard Aquifer in 2020. Water from two wells had manganese concentrations above the secondary MCL. Water samples from all eight wells had TDS and sulfate concentrations above the secondary MCL. Sulfate concentrations ranged from 338 to 1090 mg/L. TDS concentrations ranged from 900 to 2,390 mg/L. Water from one well had a nitrate concentration above the primary MCL. Three of the samples were analyzed for Title 22 metals.

10/1/2020 9/9/2020	Oxnard Oxnard	Upper Upper	ND	900	338	52	0.6
	Oxnard	Upper					2.0
		0440	13.5	1800	788	87	0.8
11/19/2020	Oxnard	Upper	5.9	1530	661	77	0.9
11/5/2020	Oxnard	Upper	35.8	2390	1090	107	1
11/19/2020	Oxnard	Upper	24	1060	460	55	0.7
11/25/2020	Oxnard	Upper	33.3	1090	455	57	0.6
9/9/2020	Oxnard	Upper	46.3	1620	704	63	0.9
11/5/2020	Oxnard	Upper	1.7	1040	462	52	0.6
1	1/19/2020 1/25/2020 9/9/2020	1/19/2020 Oxnard 1/25/2020 Oxnard 9/9/2020 Oxnard 11/5/2020 Oxnard	11/5/2020OxnardUpper11/19/2020OxnardUpper11/25/2020OxnardUpper9/9/2020OxnardUpper11/5/2020OxnardUpper	11/5/2020 Oxnard Upper 35.8 11/19/2020 Oxnard Upper 24 11/25/2020 Oxnard Upper 33.3 9/9/2020 Oxnard Upper 46.3 11/5/2020 Oxnard Upper 1.7	11/5/2020 Oxnard Upper 35.8 2390 11/19/2020 Oxnard Upper 24 1060 11/25/2020 Oxnard Upper 33.3 1090 9/9/2020 Oxnard Upper 46.3 1620 11/5/2020 Oxnard Upper 1.7 1040	11/5/2020 Oxnard Upper 35.8 2390 1090 11/19/2020 Oxnard Upper 24 1060 460 11/25/2020 Oxnard Upper 33.3 1090 455 9/9/2020 Oxnard Upper 46.3 1620 704	11/5/2020 Oxnard Upper 35.8 2390 1090 107 11/19/2020 Oxnard Upper 24 1060 460 55 11/25/2020 Oxnard Upper 33.3 1090 455 57 9/9/2020 Oxnard Upper 46.3 1620 704 63

Table 5-13: Selected water quality results for wells screened in the Oxnard Aquifer.

1. mg/L = milligrams per liter

2. ND = not detected

3. Bold numbers indicate concentration above primary or secondary MCL

Groundwater plumes with elevated nitrate concentrations are common in the northern portion of the Basin. Sources of nitrate include nitrogen-based fertilizers in agricultural areas and septic systems in residential areas.

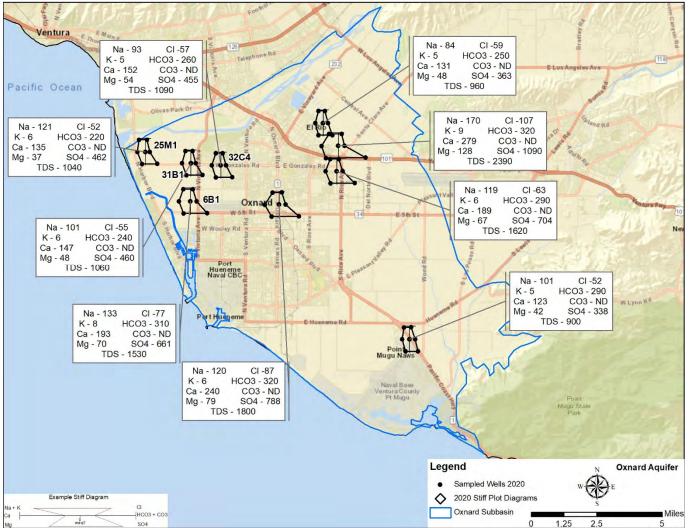


Figure 5-15: Oxnard Subbasin Oxnard Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.

Mugu Aquifer

The Mugu Aquifer is the lowest layer of the UAS and has similar physical and chemical characteristics to the Oxnard Aquifer, with slightly better water quality. Average depth to the main water-bearing unit is 200 feet bgs. Four wells perforated solely in the Mugu Aquifer were sampled in 2020. The water from all wells had sulfate and TDS concentrations above the primary MCL. One well had nitrate above the MCL. One sample was analyzed for Title 22 metals. Three wells had Manganese concentrations above the secondary MCL.

Table 5-14: Selected water quality results for wells screened in the Mugu Aquifer.

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
6R2	11/5/2020	Mugu	Upper	4.6	1480	633	71	0.8
24C3	9/25/2020	Mugu	Upper	ND	870	382	42	0.6
24M3	9/25/2020	Mugu	Upper	3.4	1010	370	107	0.6
36E4	9/9/2020	Mugu	Upper	79.6	1670	721	62	0.9

1. mg/L = milligrams per liter

2. ND = not detected

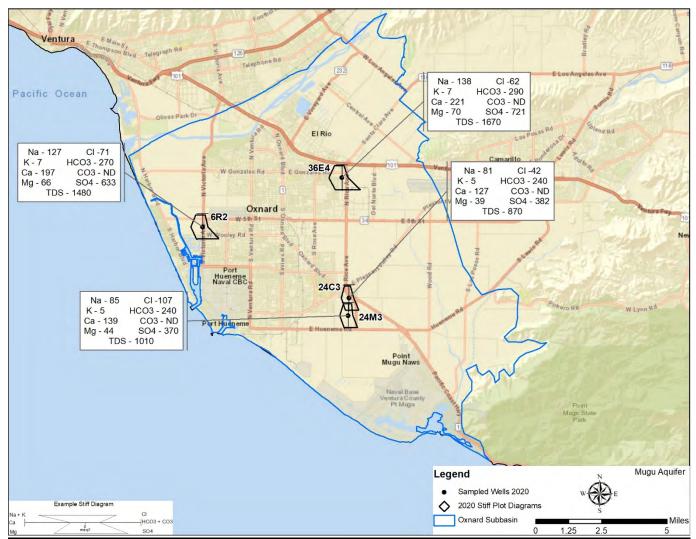


Figure 5-16: Oxnard Subbasin Mugu Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.

Oxnard & Mugu Aquifers

Five Oxnard Subbasin wells sampled in 2020 are perforated across both the Oxnard and Mugu Aquifers and will be referred to as UAS wells. Results for those wells are included in **Appendix D** and shown on the map of the UAS (**Figure 5-17**). Secondary MCL concentrations were exceeded in four samples for manganese. All five had TDS and sulfate concentrations above the secondary MCL. TDS concentrations varied between 1,020 and 1,670 mg/L. One sample had chloride concentrations above the MCL. Water samples from two Oxnard/Mugu wells were analyzed for Title 22 metals and all constituents were below the primary MCL.

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
7H5	11/25/2020	Oxnard & Mugu	Upper	ND	1220	484	123	0.6
29B3	11/10/2020	Oxnard & Mugu	Upper	ND	1020	361	104	0.6
12M1	12/2/2020	Oxnard & Mugu	Upper	ND	1480	717	67	0.8
25K1	10/1/2020	Oxnard & Mugu	Upper	0.8	1670	619	246	0.7
31D2	9/2/2020	Oxnard & Mugu	Upper	22.3	1070	447	53	0.6
Notes:								

Table 5-15: Selected water quality results for wells screened across the Oxnard & Mugu Aquifers.

1. mg/L = milligrams per liter

2. ND = not detected

3. Bold numbers indicate concentration above primary or secondary MCL

The Piper diagram in **Figure E-9** shows a comparison of all wells sampled in the UAS and perforated in the Oxnard, Mugu or across both aquifers. There is no dominant cation, though the data plots closest to a calcium cation type. One sample has no dominant anion while the dominant anion for the remaining samples is sulfate. One UAS sample is sodium sulfate type and the remaining samples are calcium sulfate type.

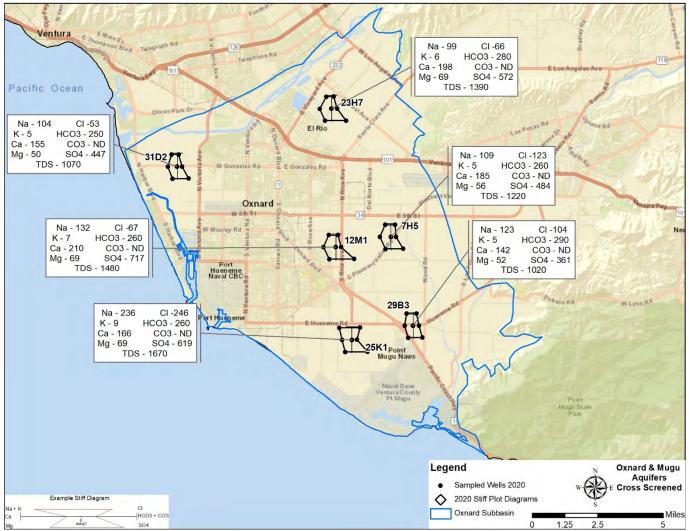


Figure 5-17: Oxnard Subbasin Oxnard & Mugu Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents.

Lower Aquifer System (LAS)

Hueneme Aquifer

The Hueneme Aquifer is the shallowest of the LAS aquifers with the depth to the main water-bearing unit at approximately 375 feet bgs. Few wells are perforated exclusively in the Hueneme Aquifer making water quality determination for the Aquifer difficult. Three wells screened solely in the Hueneme Aquifer were sampled in 2020 (**Figure 5-18**). All had TDS and sulfate concentrations above the secondary MCL. One sample had manganese above the secondary MCL. One sample was analyzed for Title 22 metals.

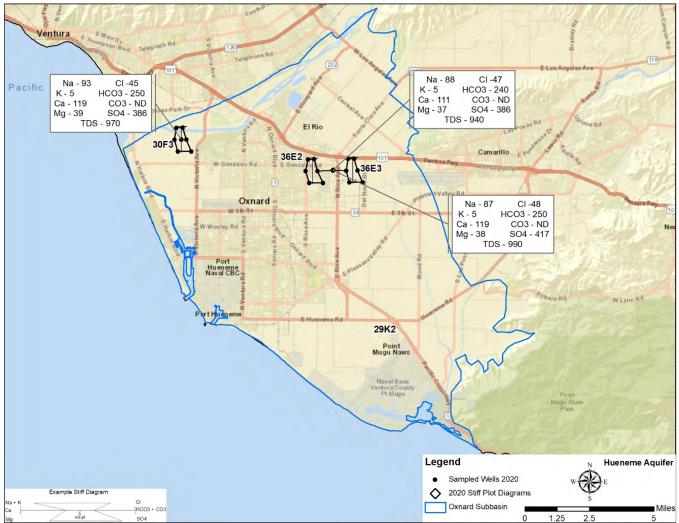

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
30F3	11/20/2020	Hueneme	Lower	ND	970	386	45	0.7
36E2	9/9/2020	Hueneme	Lower	9.2	990	417	48	0.6
36E3	9/9/2020	Hueneme	Lower	ND	940	386	47	0.6

Table 5-16: Selected water quality results for wells screened in the Hueneme Aquifer.

Notes:

1. mg/L = milligrams per liter

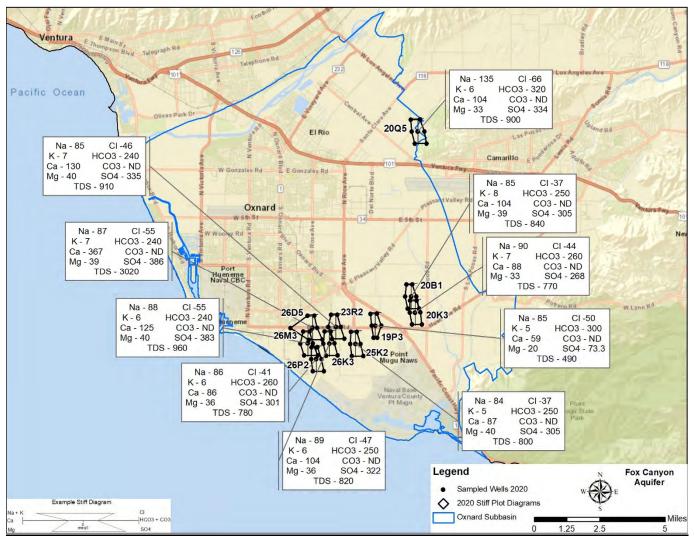
2. ND = not detected

Figure 5-18 Oxnard Subbasin Hueneme Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.

Fox Canyon Aquifer

The Fox Canyon Aquifer is the second most-developed production zone in the Oxnard Subbasin, based on the number of wells and depth of perforations. Ten wells perforated solely in the Fox Canyon Aquifer were sampled in 2020 (**Figure 5-19**). Depth to the main water-bearing unit is approximately 580 feet bgs. The Fox Canyon Aquifer generally has excellent water quality and high yield rates but is subject to seawater intrusion near Point Mugu and the Hueneme Submarine Canyon. Extractions are monitored and allocated by the FCGMA to mitigate overdraft and reduce the intrusion of seawater.

Nine samples had TDS and sulfate concentrations that exceeded the secondary MCL. Two samples were analyzed for Title 22 metals. Six samples had manganese above the secondary MCL level. One sample had a nitrate concentration above the MCL.


Table 5-17: Selected wat	er quality res	sults for wells	screened in	the Fox Can	yon Aquifer.	

Well No. Da Sam	Δαιμτοτ	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)	
--------------------	---------	-------------------	-----------------------------	---------------	-------------------	--------------------	-----------------	--

19P3	11/23/2020	Fox Canyon	Lower	ND	490	73.3	50	0.2
20B1	11/23/2020	Fox Canyon	Lower	ND	840	305	37	0.6
20K3	11/5/2020	Fox Canyon	Lower	ND	770	268	44	0.5
23R2	11/23/2020	Fox Canyon	Lower	ND	910	335	46	0.6
25K2	10/1/2020	Fox Canyon	Lower	ND	800	305	37	0.6
26D5	9/25/2020	Fox Canyon	Lower	1680*	3020	386	55	0.8
26K3	9/25/2020	Fox Canyon	Lower	ND	820	322	47	0.4
26M3	9/25/2020	Fox Canyon	Lower	ND	960	383	55	0.5
26P2	9/25/2020	Fox Canyon	Lower	3.2	780	301	41	0.4
20Q5	9/9/2020	Fox Canyon	Lower	ND	900	334	66	0.6

1. mg/L = milligrams per liter 2. ND = not detected

Bold numbers indicate concentration above primary or secondary MCL
 + High nitrate likely due to well operator injecting fertilizer at time of sampling.

Figure 5-19 Oxnard Subbasin Fox Canyon Aquifer sampled wells with Stiff diagrams and selected inorganic constituents.

Hueneme & Fox Canyon Aquifers

Seven Oxnard Subbasin wells sampled in 2020 are perforated across both the Hueneme and Fox Canyon Aquifers and will be referred to as LAS wells. Results for those wells are included in **Appendix D** and shown on the map of the LAS (**Figure 5-20**). Secondary MCL concentrations were exceeded in three samples for manganese and all five samples for sulfate. All five had TDS concentrations above the secondary MCL. TDS concentrations varied between 810 and 1,050 mg/L. Water samples from one Hueneme/Fox Canyon well was analyzed for Title 22 metals and all constituents were below the primary MCL.

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
17B2	9/25/2020	Hue & Fox	Lower	ND	810	327	39	0.4
3F5	9/9/2020	Hue & Fox	Lower	11.2	970	427	47	0.7
21H2	12/2/2020	Hue & Fox	Lower	ND	770	216	98	0.4
29E4	11/10/2020	Hue & Fox	Lower	3.5	820	287	57	0.5
30A2	9/9/2020	Hue & Fox	Lower	3.4	880	363	52	0.5
19J3	11/5/2020	Hue & Fox	Lower	ND	1050	428	52	0.6
24P2	9/9/2020	Hue & Fox	Lower	8.2	920	395	47	0.6

Table 5-18: Selected water quality results for wells screened across the Hueneme & Fox Canyon Aquifers.

1. mg/L = milligrams per liter

2. ND = not detected

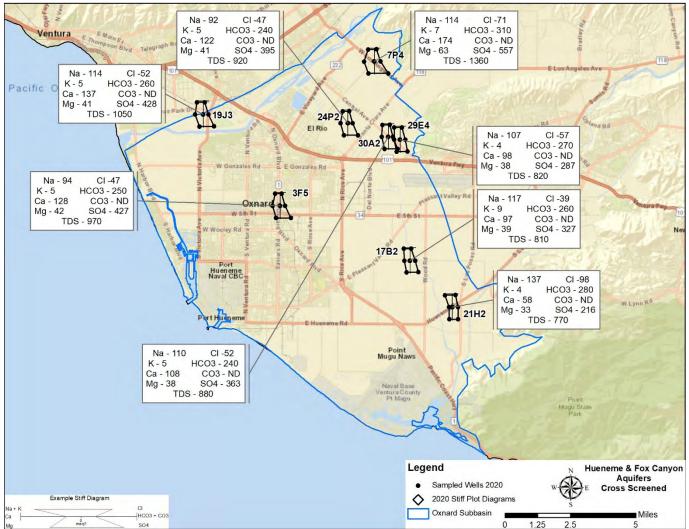


Figure 5-20 Oxnard Subbasin Hueneme and Fox Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents.

Fox Canyon & Grimes Canyon Aquifers

Three Oxnard Subbasin wells sampled in 2020 are perforated in the Fox Canyon and the Grimes Canyon Aquifers. They are also referred to as LAS wells. Results for those wells are included in **Appendix D** and shown on the map of the LAS **Figure 5-21**. Water from one well exceeded the drinking water secondary MCL concentration for manganese. All three samples had sulfate and TDS concentrations above the secondary MCL.

Well No.	Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
28D1	12/2/2020	Fox & Grimes	Lower	ND	770	258	76	0.4
12N3	12/2/2020	Fox & Grimes	Lower	ND	850	360	38	0.5
16M3	11/25/2020	Fox & Grimes	Lower	ND	890	265	109	0.5

Table 5-19: Selected water quality results for wells across the Fox Canyon & Grimes Aquifers.

1. mg/L = milligrams per liter

2. ND = not detected

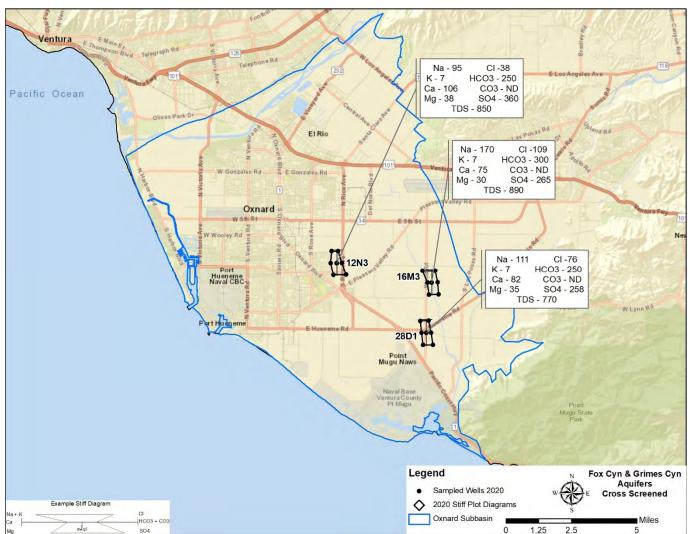
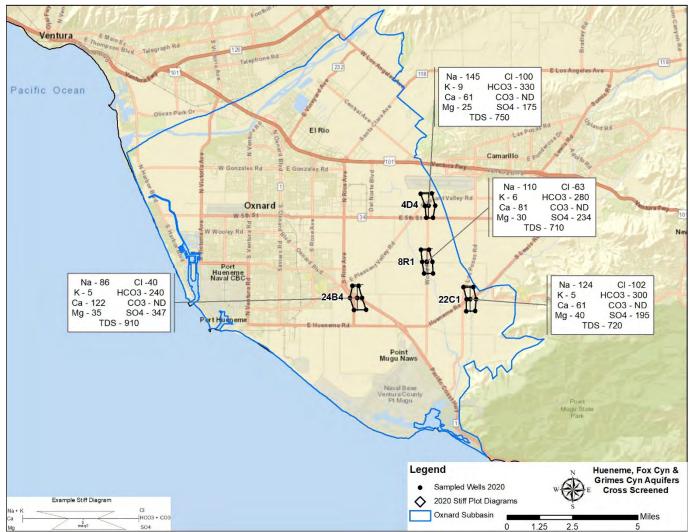


Figure 5-21 Oxnard Subbasin Fox Canyon and Grimes Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents.

Hueneme, Fox Canyon & Grimes Canyon Aquifers

Four Oxnard Subbasin wells sampled in 2020 are perforated across the Hueneme, Fox Canyon and Grimes Canyon Aquifers. They are also referred to as LAS wells. Results for those wells are included in **Appendix D** and shown on the map of the LAS in **Figure 5-22**. Water from one well had manganese concentration, one had sulfate and all four had TDS concentrations above the secondary MCL. TDS concentrations from these wells varied between 710 and 910 mg/L. Water samples from three Fox/Hueneme/Grimes wells was analyzed for Title 22 metals with all constituents below the primary MCL.


Table 5-20: Selected water	quality r	esults for we	lls screene	d across t	he Hueneme	e, Fox Can	yon & Grime	s Aquifers	3.

Date Sampled	Aquifer	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
12/2/2020	Hue, Fox & Grimes	Lower	ND	750	175	100	0.4
12/2/2020	Hue, Fox & Grimes	Lower	ND	710	234	63	0.3
12/2/2020	Hue, Fox & Grimes	Lower	ND	720	195	102	0.4
11/5/2020	Hue, Fox & Grimes	Lower	ND	910	347	40	0.6
	12/2/2020 12/2/2020 12/2/2020	12/2/2020 Hue, Fox & Grimes 12/2/2020 Hue, Fox & Grimes 12/2/2020 Hue, Fox & Grimes 12/2/2020 Hue, Fox & Grimes 11/5/2020 Hue, Fox	Date SampledAquilerSystem12/2/2020Hue, Fox & GrimesLower12/2/2020Hue, Fox & GrimesLower12/2/2020Hue, Fox & GrimesLower11/5/2020Hue, Fox & GrimesLower	Date SampledAquifer Aquifer SystemAquifer NO3 (mg/L)12/2/2020Hue, Fox & GrimesLowerND12/2/2020Hue, Fox & GrimesLowerND12/2/2020Hue, Fox & GrimesLowerND12/2/2020Hue, Fox & GrimesLowerND11/5/2020Hue, Fox & LowerLowerND	Date SampledAquifer Aquifer SystemAquifer NO3 (mg/L)TDS (mg/L)12/2/2020Hue, Fox & GrimesLowerND75012/2/2020Hue, Fox & GrimesLowerND71012/2/2020Hue, Fox & GrimesLowerND72011/5/2020Hue, Fox & GrimesLowerND910	Date SampledAquifer SystemAquifer Systemas NO3 (mg/L)TDS (mg/L)Sulfate (mg/L)12/2/2020Hue, Fox & GrimesLowerND75017512/2/2020Hue, Fox & GrimesLowerND71023412/2/2020Hue, Fox & GrimesLowerND72019511/5/2020Hue, Fox & GrimesLowerND910347	Date SampledAquifer SystemAquifer Systemas NO3 (mg/L)TDS (mg/L)Sulfate (mg/L)Chloride (mg/L)12/2/2020Hue, Fox & GrimesLowerND75017510012/2/2020Hue, Fox & GrimesLowerND7102346312/2/2020Hue, Fox & GrimesLowerND72019510211/5/2020Hue, Fox & GrimesLowerND91034740

Notes:

1. mg/L = milligrams per liter

2. ND = not detected

Figure 5-22 Oxnard Subbasin Hueneme, Fox Canyon and Grimes Canyon Aquifers cross screened sampled wells with Stiff diagrams and selected inorganic constituents.

The Piper diagram Figure E-10 shows moderate variability in water quality of all wells sampled in the LAS.

The Piper diagram **Figure E-11** shows moderate variation between all wells sampled in the Oxnard Subbasin.

Santa Clara River Valley Basin – Piru Subbasin (DWR Basin No. 4-004.06)

The Piru Subbasin groundwater recharge is principally from precipitation, water releases from Lake Piru by UWCD, and the Santa Clara River. Flow from the Santa Clara River enters the basin from the east and carries discharges from wastewater treatment plants and urban and stormwater runoff from Los Angeles County. There are approximately 190 water supply wells in the Piru Subbasin, of which 147 are active. Depth to the main water-bearing unit is approximately 30 to 90 feet bgs. On April 6, 2010, the LARWQCB adopted a Basin Plan Amendment that includes a Total Maximum Daily Load (TMDL) of 117 mg/L for chloride in surface water and 150 mg/L in groundwater for the stretch of the Santa Clara River in Ventura County east of Piru Creek.

Six wells were sampled in the Piru Subbasin in 2020. None of the groundwater sampled has a chloride concentration above the TMDL. The Piper diagram, Figure E-12 shows low variability in water quality. There is no dominant cation for any samples. Sulfate is the dominant anion for three samples with no dominant anion for the remaining samples. Five samples are calcium sulfate type and one sample is sodium sulfate type. The TDS concentrations exceeded the secondary MCL in all samples and varied from 710 to 2,330 mg/L. Sulfate concentrations exceeded the secondary MCL in five samples. One sample had a manganese concentration greater than the secondary MCL and no samples had nitrate concentrations greater than the primary MCL. Figure 5-23 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Water samples from one well were analyzed for Title 22 metals. The sample had a selenium concentration over the primary MCL. The concentrations for the remaining constituents were below the primary MCL.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
30J4	8/31/2020	9.6	710	216	68	0.5
25H1	8/27/2020	25.6	1000	315	108	0.5
25M3	8/27/2020	1.8	2330	1090	60	0.7
26H1	8/27/2020	24.4	1230	429	106	0.7
26J3	8/31/2020	15.6	980	327	107	0.5
34J4	8/31/2020	11.1	1020	391	56	0.5
Notes:	1		1	1		

Table 5-21: Selected water quality results for the Piru Subbasin.

1. mg/L = milligrams per liter

2. ND = not detected

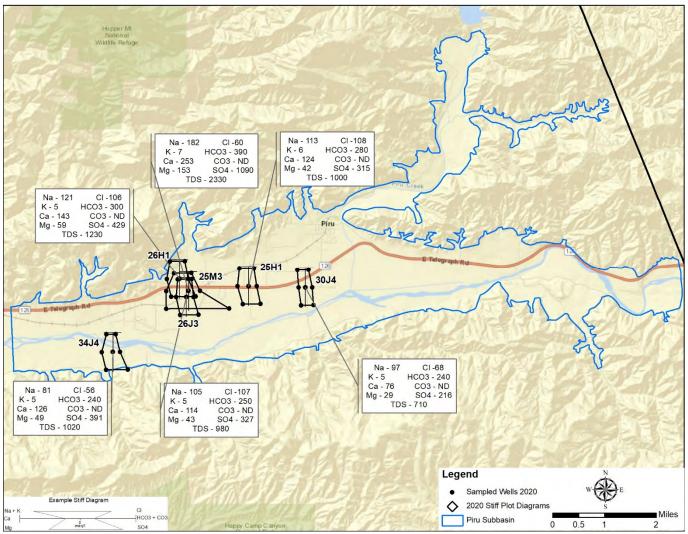


Figure 5-23: Piru Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Pleasant Valley Basin (DWR Basin No. 4-006)

Pleasant Valley Basin groundwater quality varies greatly throughout the basin. The upper-most waterbearing unit at 35 to 60 feet is not used due to very poor water quality. Permeable lenses of alluvial sands, gravels, silts and clays of recent to Upper Pleistocene age that vary in thickness from a few feet to several hundred feet are equivalent to but not connected with the Oxnard Aquifer and are referred to as the upper zone in this report. Depth to the main water-bearing unit is approximately 400 to 500 feet bgs. Underlying the upper zone are the aquifers of the Lower Aquifer System (LAS). First are the marine sands and gravels of the lower-most member of the early Pleistocene San Pedro Formation and is known as the Fox Canyon Aquifer. The Grimes Canyon Aquifer underlies the Fox Canyon Aquifer at depths below 1,000 feet and is perforated by only the deepest wells. There are approximately 346 water supply wells in the Pleasant Valley Basin, of which 85 are active. Twenty wells were sampled in 2020, with four perforated in the upper zone, one perforated in both upper zone and LAS, and fourteen perforated in the LAS.

The Piper diagram, **Figure E-13** shows a comparison of wells perforated in the upper zone with those perforated in the LAS. Wells perforated in the upper zone tend to have higher concentrations of sulfate than those in the LAS but in general the upper zone and LAS show similar water quality. The Piper diagram shows more variability in the water samples from the LAS. For wells in the upper zone, calcium is the dominant cation in one sample and the remaining three samples have no dominant cation but plot closely to the calcium type. Three samples are calcium sulfate type and one sample is sodium sulfate. For wells in the LAS, sodium is the dominant cation in one sample. The remainder have no dominant cation. Sulfate is the dominant anion in five samples with no dominant anion for the remainder. The water in one sample is sodium chloride, four samples are sodium sulfate type, three samples are sodium bicarbonate type and the remainder are calcium sulfate type. The water in the well perforated in both the upper zone and LAS is calcium sulfate type.

TDS concentrations in all groundwater samples varied from 670 to 4,770 mg/L. All twenty wells sampled had TDS concentrations above the secondary MCL, with the four highest concentrations in samples collected from the upper zone. Fifteen wells had sulfate concentrations above the secondary MCL; the three highest were in samples collected from the upper zone. Five wells had nitrate concentrations above the drinking water MCL; the highest was from a well in the upper zone. Seven samples had manganese concentrations above the secondary MCL. Chloride concentrations above the secondary MCL were detected in samples collected from three wells, and samples collected from seventeen wells were detected above a concentration that can impair agricultural beneficial uses. Seven water samples were analyzed for Title 22 metals. None of the analyses were above the primary MCL. **Figure 5-24** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Aquifer System	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
2H4	11/19/2020	Both	128	2200	805	207	0.8
1B5	9/25/2020	Lower	ND	790	63.4	195	0.3
1D8	11/19/2020	Lower	ND	1090	214	219	0.4
1M2	9/25/2020	Lower	ND	920	190	165	0.3
3D1	10/1/2020	Lower	65.2	1290	439	109	0.5
3K1	12/2/2020	Lower	25.7	1200	461	125	0.5
3L3	11/23/2020	Lower	ND	970	322	104	0.4
3R1	12/2/2020	Lower	59.6	1860	691	211	0.6
4R2	11/23/2020	Lower	14.3	790	256	73	0.3
10G1	12/2/2020	Lower	8	1270	464	173	0.4
15D2	12/2/2020	Lower	2.9	1490	568	195	0.5
19F4	10/9/2020	Lower	ND	1450	596	157	0.6
29B2	11/12/2020	Lower	5.3	790	154	125	0.3
33R2	10/9/2020	Lower	ND	670	217	62	0.2
34C1	10/9/2020	Lower	ND	790	272	81	0.3
34G1	12/2/2020	Lower	ND	1150	316	188	0.8
2J1	11/19/2020	Upper	232	4540	1850	410	1.9
10A2	9/25/2020	Upper	77.7	2450	1010	217	0.5
12D1	9/25/2020	Upper	ND	2400	846	333	0.7
15H1	9/25/2020	Upper	3	4770	2150	660	1.7
Notes:							

Table 5-22: Selected water	quality results for the	Pleasant Valley E	Basin.
----------------------------	-------------------------	-------------------	--------

mg/L = milligrams per liter
 ND = not detected
 Bold numbers indicate concentration above primary or secondary MCL

2020 Annual Report of Groundwater Conditions

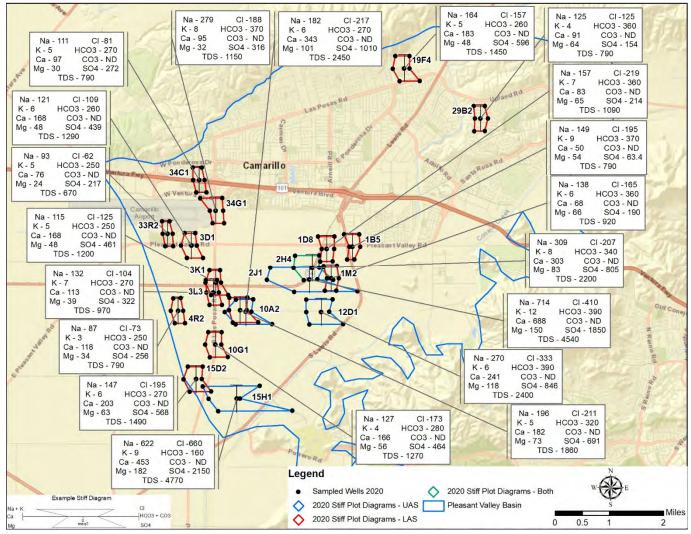


Figure 5-24: Pleasant Valley Basin sampled wells with Stiff diagrams and selected inorganic constituents.

Santa Clara River Basin – Santa Paula Subbasin (DWR Basin No. 4-004.04)

The Santa Paula Subbasin is a court adjudicated groundwater basin. To mitigate overdraft, a June 1991 judgment ordered the creation of the Santa Paula Basin Pumpers Association (SPBPA). The SPBPA regulates extractions in the Santa Paula Subbasin. The judgment stipulated an allotment of 27,000 acrefeet per year could be pumped from the Subbasin. Water quality in the Subbasin has not changed substantially since 2007. The depth to the water-bearing unit is 65 to 160 feet bgs. There are approximately 294 water supply wells in the Santa Paula Subbasin, of which 153 are active. Water samples from eight wells in the basin were analyzed in 2020. The Piper diagram, Figure E-14 shows no significant change in the water quality since previous sampling. Calcium is the dominant cation in two samples and there is no dominant cation in the remaining samples. Sulfate is the dominant anion; the water is calcium sulfate type. All eight samples had TDS and sulfate concentrations above the secondary MCL for drinking water. One sample had an iron concentration over the MCI and four have manganese over the MCI. Three samples were analyzed for Title 22 metals. No constituent was above the MCL. Figure 5-25 shows approximate well location and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate. carbonate and sulfate for well sampled.

Figure E-20 compares water samples from the up-gradient Piru and Fillmore Subbasins to the Santa Paula Subbasin. The Piper diagram shows moderate variability among the samples. Filmore subbasin has higher variability than the Santa Paula and Piru subbasins, with higher calcium and lower sulfate concentrations but higher bicarbonate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
3E1	9/9/2020	2.3	2140	1020	115	0.5
3K2	8/26/2020	3.4	1200	434	88	0.5
9K4	9/9/2020	ND	940	386	48	0.4
17Q1	9/3/2020	19.1	1530	617	77	0.6
21E11	9/3/2020	ND	1460	572	107	0.7
30F01	8/31/2020	1.3	1730	733	85	0.7
35Q1	10/19/2020	35.5	2680	1180	100	0.9
36K7	11/10/2020	ND	1450	603	74	0.5
Notes: 1. mg/L = millig	grams per liter	L	L	L	L	

Table 5-23: Selected water quality results for the Santa Paula Subbasin.

2. ND = not detected

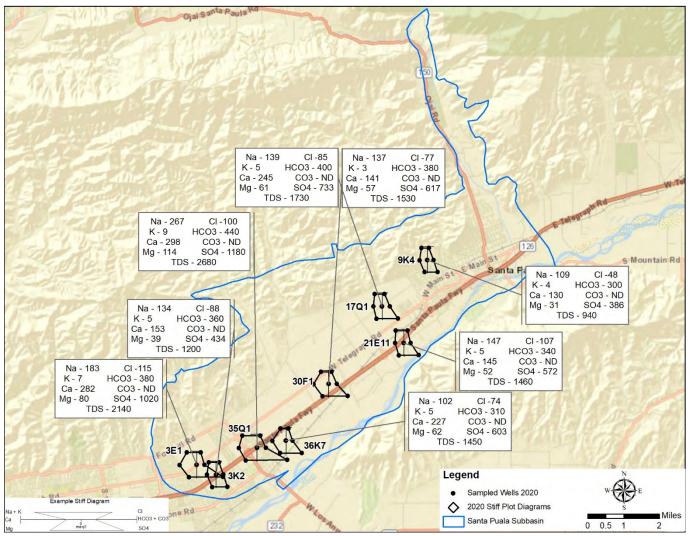


Figure 5-25: Santa Paula Subbasin sampled wells with Stiff diagrams and selected inorganic constituents.

Hidden Valley Basin (DWR Basin No. 4-016)

The Hidden Valley Basin consists mainly of fractured volcanic rock providing inconsistent groundwater supply throughout the basin because much of the water is stored in fractures. The water quality varies because of the heterogeneous nature of the aquifer. There are approximately 147 water supply wells in the basin, of which 96 are active. Water samples were collected from one well in 2020. The Piper diagram in **Figure E-27** shows the chemistry of the sample. There is no dominant cation in the sample and bicarbonate is the dominant anion. The water is magnesium bicarbonate type.

TDS concentration was above the secondary MCL (**Table 5-24**). The sample was analyzed for Title 22 metals. All constituents below the MCL for drinking water. **Figure 4-26** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
19H3	12/17/2020	ND	540	114	43	0.1
Notes: 1. mg/L = millig 2. ND = not de	tected					

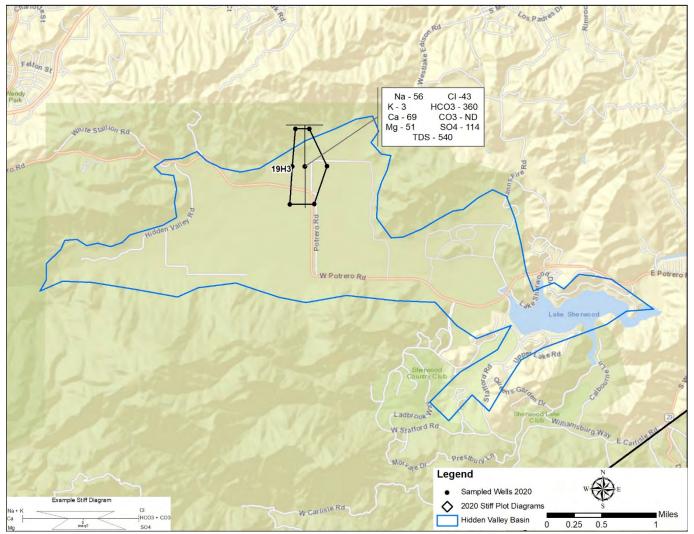


Figure 5-26: Hidden Valley Basin sampled wells with Stiff diagrams and selected inorganic analyses.

Simi Valley Basin (DWR Basin No. 4-009)

The Simi Valley Basin drains to the west and historically, water quality becomes more enriched in salts and thus, of poorer quality further west in the basin. The three wells sampled are in the western end of the valley. There are approximately 182 water supply wells in the Simi Valley Basin, of which 36 are active wells. Depth to the water-bearing unit is approximately 5 to 25 feet bgs. The City of Simi Valley has a high water-table at the western end of the valley and several dewatering wells have been installed to reduce the water table. The Piper diagram, **Figure E-15** shows low variability in water quality. There is no dominant cation, but the samples plot closely to the calcium type. Sulfate is the dominant anion in all three samples and the water is calcium sulfate type. TDS and sulfate concentrations are above the secondary MCL in all three samples. One sample has nitrate and one has manganese above the MCL. All four samples have chloride concentrations that could cause impairment of agricultural beneficial uses for sensitive plants, but are not above the primary MCL. One water sample was analyzed for Title 22 metals; all constituents are below the MCL. **Figure 4-27** shows approximate well locations and concentrations of TDS, sodium potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for wells sampled in the Simi Valley Basin.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
8D4	10/8/2020	21.5	1760	676	153	1
8K7	10/8/2020	55.8	2070	871	154	0.9
9E1	10/8/2020	29	1660	686	125	0.8
10A2	10/8/2020	59.6	1980	809	148	1.1
Notes: 1. mg/L = millig 2. ND = not det			1	L	I	<u> </u>

Table 5-25: Selected water quality results for the Simi Valley Basin.

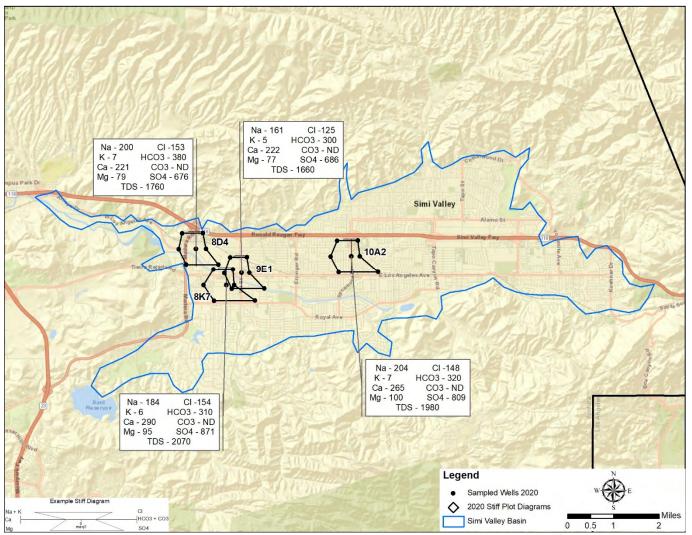


Figure 5-27: Simi Valley Basin sampled wells with Stiff diagrams and selected inorganic analyses.

Tapo/Gillibrand Basin

The Tapo/Gillibrand Basin is located to the north of Simi Valley. The Tapo/Gillibrand Basin is an east-west trending structural basin that consists of permeable sand and gravel that occur near the center of the Happy Camp Syncline. The basin is bounded by the Santa Susana Fault to the north, the Simi Anticline to the south and impermeable sediments of the Sisquoc Formation and Monterey Shale in the remaining areas. There are approximately 46 water supply wells in the Tapo/Gillibrand Basin, of which 14 are active. The City of Simi Valley operates several wells in the basin for backup water supply. Two wells were sampled in this basin in 2020.

The Piper diagram, Figure E-29 shows low variability in water quality. Calcium is the dominant cation,. Sulfate is the dominant anion in all both samples. The water is calcium sulfate type. TDS and sulfate concentrations are above the secondary MCL in both samples. One sample has manganese above the MCL. One water sample was analyzed for Title 22 metals; all constituents are below the MCL. Figure 4-28 shows approximate well locations and concentrations of TDS, sodium potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for wells sampled in the Simi Valley Basin.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
24C7	10/8/2020	10.3	860	319	28	0.1
24H6	10/8/2020	2.5	930	336	31	0.2
Notes: 1. mg/L = millio						

 Table 5-26:
 Selected water quality results for the Simi Valley Basin.

2. ND = not detected

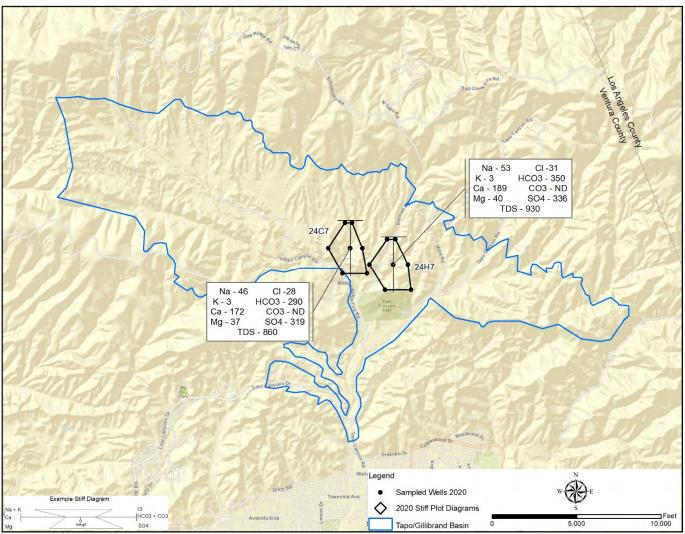


Figure 5-28: Tapo/Gillibrand Basin.

Thousand Oaks Area Basin (DWR No. 4-019)

The Thousand Oaks Area Basin has very few active water wells available for sampling. The depth to the water-bearing unit is approximately 25 to 30 feet bgs. The groundwater basin underlies a small valley between Lake Sherwood and the City of Thousand Oaks, just east of Highway 23. Water-bearing formations are mainly alluvium and fractured Conejo Volcanics. There are approximately 119 water supply wells in the basin, of which 12 are active. No wells were sampled in this basin in 2020. **Figure 4-29** shows the extent of the Thousand Oaks Area Basin.

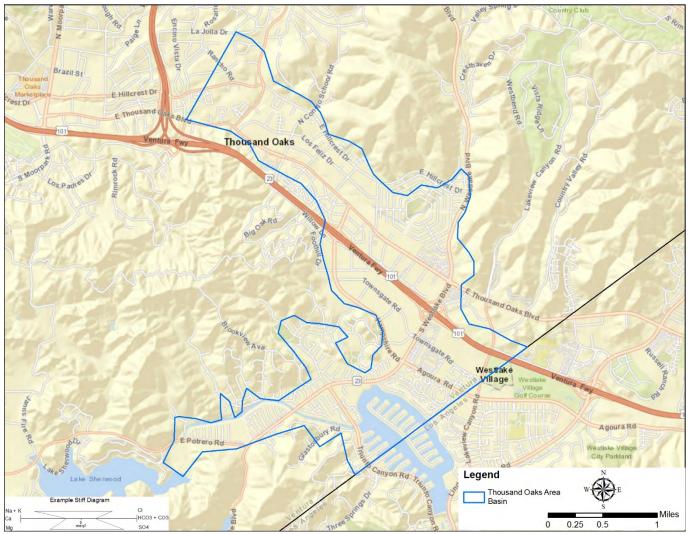


Figure 5-29: Thousand Oaks Area Basin.

Tierra Rejada Valley Basin (DWR Basin No. 4-015)

Depth to water-bearing materials varies between 20 to 80 feet bgs. There are approximately 58 water supply wells in the Tierra Rejada Valley Basin, of which 36 are active. Six wells were sampled in 2020. The Piper diagram, **Figure E-16** shows low variation in water quality. There is no dominant cation. Bicarbonate is the dominant anion for one sample and the remainder have no dominant anion. Water samples from all the wells are magnesium bicarbonate type. One well has a nitrate concentration above the primary MCL. Water from all Six wells has TDS concentrations above the secondary MCL, ranging from 530 to 1,230 mg/L. One well in the basin was analyzed for Title 22 metals and all constituents were below the primary MCL.

The Piper diagram, **Figure E-3** shows a comparison of water chemistry between Tierra Rejada and Arroyo Santa Rosa Basins. Chemistry in the two basins is similar but there is more variation in Tierra Rejada with slightly higher magnesium, bicarbonate and sulfate. **Figure 4-30** shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
10R2	10/9/2020	8.8	720	170	75	0.1
11J1	10/9/2020	24.4	750	174	70	0.2
14F1	11/12/2020	73.4	940	150	117	0.1
14Q2	10/27/2020	ND	530	102	50	ND
15J2	11/12/2020	12	1230	315	169	0.2
15N3	11/12/2020	0.9	720	157	80	0.1
Notes:	1	1	1	1		1

Table 5-27: Selected water quality results for the Tierra Rejada Valley Basin.

1. mg/L = milligrams per liter

2. ND = not detected

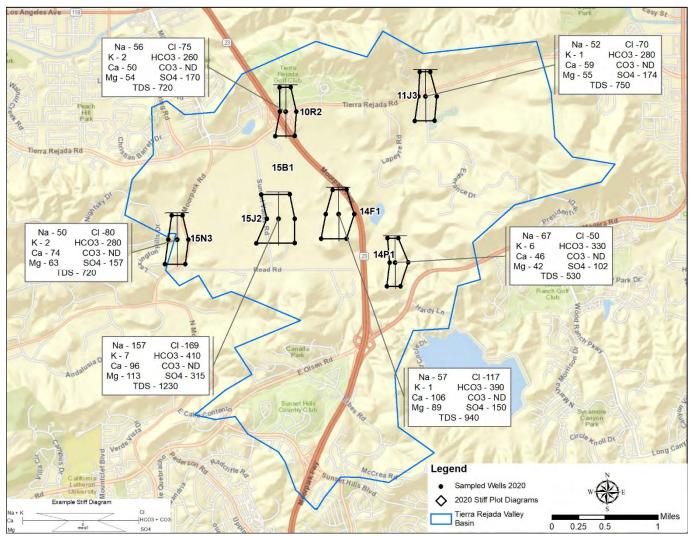


Figure 5-30: Tierra Rejada Basin sampled wells with Stiff diagrams and selected inorganic analyses.

Figure 4-31 shows nitrate concentrations for wells sampled in the Tierra Rejada Valley Basin in 2020. Groundwater from one well sampled has a nitrate concentration that exceeds the primary MCL. Other wells previously sampled with elevated nitrate concentrations were not available for sampling in 2020.

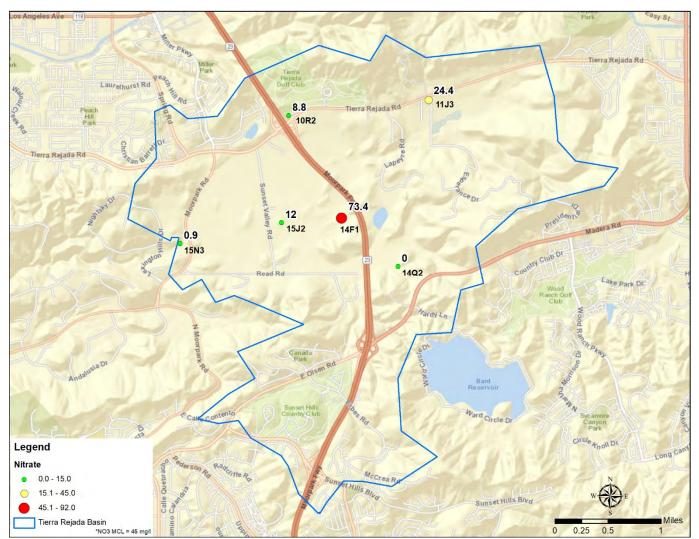


Figure 5-31: Tierra Rejada Basin location of sampled wells and nitrate concentrations.

Upper Ojai Valley Basin (DWR Basin No. 4-001)

The Upper Ojai Valley Basin is a small, linear valley southeast of and at a higher elevation than the Ojai Valley Basin. The average thickness of water-bearing deposits is approximately 60 feet and is encountered approximately 45 to 60 feet bgs. Groundwater guality is considered good but varies seasonally and usually has better quality during winter months. There are approximately 170 water supply wells in the Upper Ojai Valley Basin, of which 127 are active wells. Three wells were sampled in 2020. The Piper diagram, Figure E-17 shows some variation in the water quality of the wells. There is no dominant cation in the samples, but all plot closely to the calcium cation type. Bicarbonate is the dominant anion in two samples with no dominant anion in the remaining sample. The water is calcium bicarbonate type in two samples and calcium sulfate in one sample.

Manganese is above the secondary MCL in one sample. One water sample was analyzed for Title 22 metals and all constituents were below the primary MCL. Figure 4-32 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
10K5	9/1/2020	3.2	470	163	23	0.2
11P2	9/10/2020	8.3	310	36.8	23	ND
12M3	9/10/2020	20	460	101	32	0.1
2. ND = not d	igrams per liter etected ers indicate concentra	ation above prim	narv or seconda	rv MCL	1	L

Table 5-28: Selected Water Quality Results for the Upper Ojai Basin.

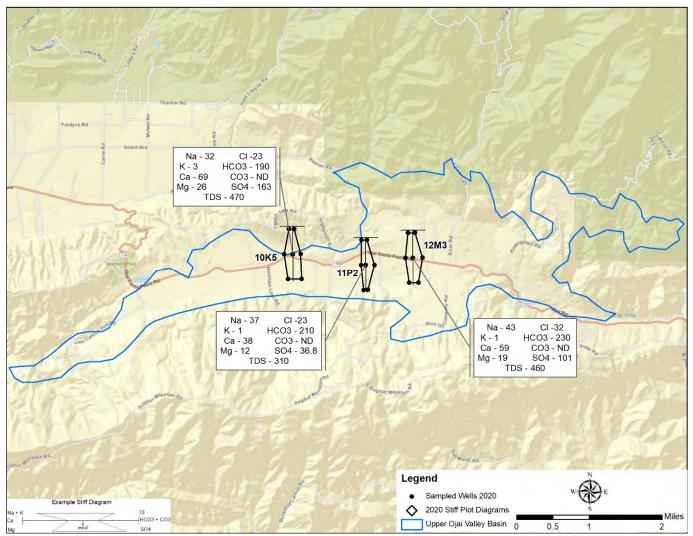
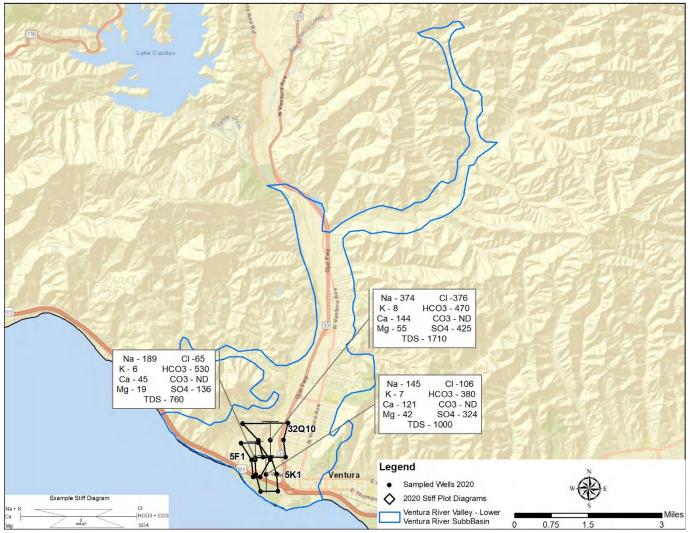


Figure 5-32: Upper Ojai Basin sampled wells with Stiff diagrams and selected inorganic analyses.


Ventura River Valley – Lower Ventura River Subbasin (DWR Basin No. 4-003.02)

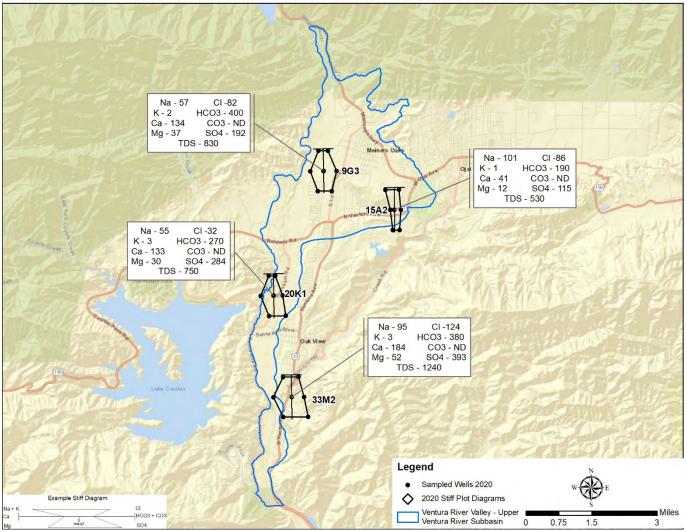
The Lower Ventura River Subbasin is commonly defined at a point coinciding with the City of Ventura's submerged dam at Foster Park and extending to the Pacific Ocean. The subbasin shares a common boundary with the Mound Subbasin at its lower reach. Canada Larga and several smaller tributary canyons are also part of the subbasin. The water-bearing unit consists of alluvial sand and gravel with abundant cobbles and ranges in thickness from 60 to 200 feet and perhaps up to 300 feet at the mouth of the Ventura River. The subbasin has few remaining active wells available for sampling. Depth to the water-bearing unit is 3 to 13 feet bgs in the floodplain and deeper as the ground surface elevation increases towards the edges of the subbasin. There are approximately 34 wells in the Lower Ventura River Basin, of which 21 are active. Three wells were sampled in 2020. All three samples have TDS and two samples have sulfate concentrations that exceed the secondary MCL. Two samples have manganese above the MCL and one has chloride above the MCL for drinking water. All three samples have chloride concentrations that are above the level that could cause impairment of agricultural beneficial uses for sensitive plants. Two samples were analyzed for Title 22 metals. No constituents were above the MCL. Figure 4-43 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for the well. The Piper diagram, Figure E-18 shows the water quality of the samples. Sodium is the dominant cation in two samples. There is no dominant cation in the other sample. Bicarbonate is the dominant anion in one sample. There is no dominant anion in the other two samples. One water sample is sodium bicarbonate type, one sample is sodium chloride type, and the remaining sample is sodium sulfate type. Figure 4-33 shows approximate well locations and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
5F1	12/22/2020	ND	760	136	65	0.7
5K1	09/01/2020	ND	1000	324	106	0.7
32Q10	12/22/2020	0.5	1710	425	376	1.3
Notes: 1. mg/L = milli				I	1	

Table 5-29: Selected water quality results for the Lower Ventura River Subbasin.

2. ND = not detected

Figure 5-33: Ventura River Valley – Lower Ventura River Subbasin sampled well with Stiff diagram and selected inorganic analyses.


Ventura River Valley – Upper Ventura River Subbasin (DWR Basin No. 4-003.01)

The Upper Ventura River Subbasin is mainly composed of thin alluvial deposits. There are approximately 202 water supply wells in the Upper Ventura River Subbasin, of which 118 are active. Three wells within the basin and one well just outside the basin were sampled in 2020. The Piper diagram, **Figure E-19** shows moderate variation in water quality among the samples. The dominant cation in three samples is calcium and the dominant cation in one sample is sodium. The dominant anion in one sample is bicarbonate and one sample is sulfate type. Two samples have no dominant anion. The water in one sample is calcium bicarbonate, one sample is sodium bicarbonate and two samples are calcium sulfate type.

All four water samples have TDS concentrations that exceed the secondary MCL; two samples have sulfate concentrations that exceed the secondary MCL and one sample has a manganese concentration that exceeds the secondary MCL. Two wells were analyzed for Title 22 metals. No constituents were above the MCL for drinking water. **Figure 45-34** shows the approximate well location and concentrations of TDS, sodium, potassium, calcium, magnesium, chloride, bicarbonate, carbonate and sulfate for the well.

Well No.	Date Sampled	Nitrate as NO3 (mg/L)	TDS (mg/L)	Sulfate (mg/L)	Chloride (mg/L)	Boron (mg/L)
9G3	9/10/2020	41.8	830	192	82	0.4
15A2	9/16/2020	14.6	530	115	86	0.3
20K1	9/10/2020	5.8	750	284	32	0.7
33M2 (outside basin)	9/1/2020	ND	1240	393	124	0.4

2. ND = not detected

Figure 5-34: Ventura River Valley – Upper Ventura River Subbasin sampled well with Stiff diagram and selected inorganic constituents.

6.0 **Groundwater Elevations**

Groundwater elevations are measured in production and monitoring wells throughout the County. Water levels are tracked to determine change in storage and trends in groundwater extraction and recharge. Elevation data are shared with and provided by other organizations and agencies. The data are also used to generate groundwater elevation maps to determine the direction of groundwater movement. Collected data are publicly available.

In 2020 approximately 200 wells throughout the County (**Figures 6-1 and 6-2**) were gauged, including seventeen designated as "key" wells, considered to represent groundwater elevations over a broad area of the groundwater basin. Key wells⁷ were chosen based on location in a basin, availability of construction information and historical water level data. Water levels are measured quarterly in the southern half of the County and water levels in the northern half are measured bi-annually.

Gauged wells include abandoned wells that are not in operation and active wells that were not pumping for at least 24 hours prior to water level gauging. The same wells are attempted to be gauged each year. Well availability is dependent on owner permissions and times of operation. When a well is not available for gauging, an alternative well is identified. Replacement wells must be nearby, of a similar depth and have the same perforation intervals.

⁷ Appendix B includes the location of key wells, water level changes and hydrographs.

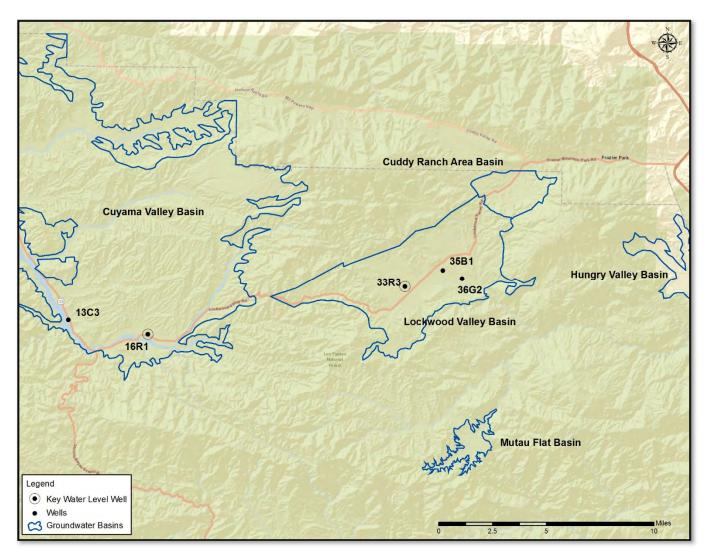


Figure 6-1: Water level wells measured in the northern half of the County.

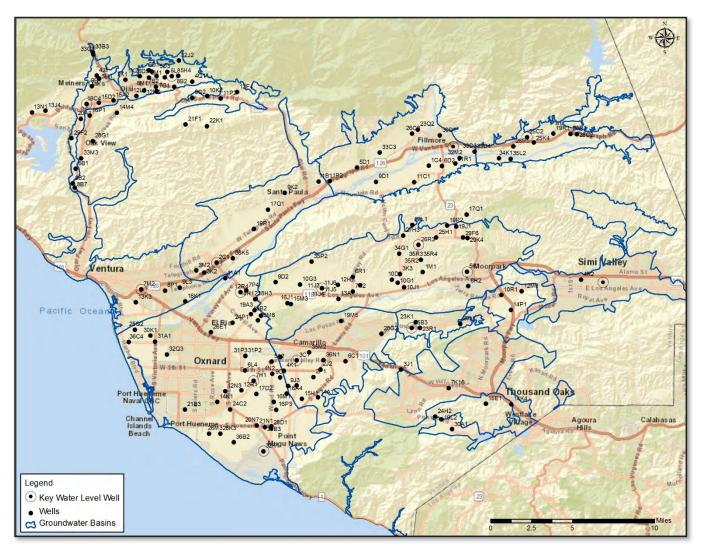
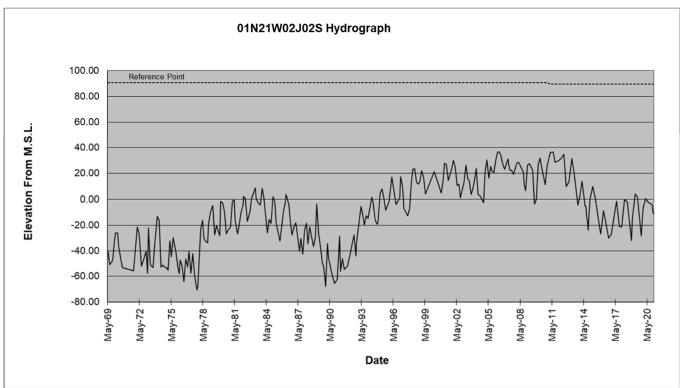



Figure 6-2: Water level wells measured in the southern half of the County.

Water Level Hydrographs

The gauged wells include wells that are not in operation and active wells that were not pumping for at least 24 hours prior to water level gauging. The same wells are consistently gauged; however, alternative wells are substituted when primary wells cannot be gauged. The data along with climate, stream flow, groundwater recharge, groundwater quality and pumping data are used to evaluate groundwater conditions. Hydrographs for all key wells are shown in **Appendix B**. An example hydrograph for Well No. 01N21W02J02S is shown in **Figure 5-3**.

Figure 6-3: Hydrograph showing the groundwater elevation through time for Well No. 01N21W02J02S, located in the Pleasant Valley Basin.

*reference point = the elevation of the measuring point of the well.

Spring Groundwater Elevation Changes in Key Wells

Locations of each key well are shown in **Figure 6-4**. Key water level changes for the largest groundwater basins are summarized in **Table -1**. The information is used to track depth to groundwater trends. Spring season measurements are used for comparison since this time period is typically at the end of the seasonal rainfall year when groundwater basins are typically full. The measurements in the table are static water level measurements, in feet below the reference point, obtained after the water pump has been off for a minimum of 24 hours prior to gauging. In general, recent groundwater levels in Ventura County have shown a downward trend due to exceptional drought conditions and increased extraction of groundwater.

Hydrographs (line graphs) of individual key wells are presented in **Appendix B**. Hydrographs show changes in groundwater elevation relative to mean sea level and are measured in feet bgs or a specific reference point (RP), typically on the magnetic north side at the top of the well casing or the concrete slab at the wellhead. The hydrographs are accompanied by a bar graph to track changes from the previous year.

Figure 6-4: Key water level wells in Ventura County.

DEPTH TO GROUND WATER LEVEL CHANGES AT KEY WELLS IN VENTURA COUNTY							
Groundwater Basin	WELL NUMBER	RECOR D HIGH (ft.)	RECORD LOW (ft.)	LEVEL (ft.)	LEVEL (ft.)	LEVEL (ft.)	Change From Previous Year (ft.)
	(Period of RECORD)	(DATE)	(DATE)	(YEAR 2018)	(YEAR 2019)	(YEAR 2020)	(UP/DOWN
Oxnard Plain							(0.720111
Oxnard Aquifer	01N21W07H01S	3.4	88.4	57.0	56.3	46.4	UP 9.9
	(Jan.1931-present)	(3/1999)	(9/1964)	(3/20)	(3/13)	(3/26)	
Fox Canyon Aquifer	01N21W32K01S	18	129	87.0	60.7	67.4	DOWN 6.7
	(Dec. 1972-present)	(4/1983)	(12/1990)	(3/12)	(3/18)	(3/16)	
Forebay Management Area (Measured By UWCD)	02N22W12R04S	16.2 ft.	Dry	Dry	106.14	108.75	DOWN 2.6
	(Mar 1996-present)	(5/2006)	(7/2014 - ?)	(3/28)	(4/16)	(3/26)	
Pleasant Valley Lower System	01N21W03C01S	87.5	253.9	162.3	153.9	146.5	UP 7.4
	(Feb.1973-present)	(8/1995)	(11/1991)	(3/26)	(3/15)	(3/26)	
West Las Posas	02N21W11J04S	368.4	406.2	405.7	407.7	410.2	DOWN 2.5
	(Jan.1991 - Present)	(6/2006)	(9/2016)	(3/7)	(3/25)	(4/3)	
East Las Posas	03N20W26R03S	503	619.3	564.0	576.7	568.7	UP 8.0
	(1985-present)	(4/1986)	(9/2009)	(3/9)	(3/25)	(6/10)	
Santa Rosa Valley	02N20W26B03S	13.2	60.3	66.2	54.5	52.7	UP 1.8
	(Oct.1972-present)	(4/1979)	(11/2004)	(3/27)	(6/5)	(3/31)	
Simi Valley	02N18W10A02S	45	92	89.1	86.3	85.8	UP 0.5
	(Dec.1984-present)	(2/1998)	(6/1992)	(3/23)	(3/29)	(3/27)	
Ventura River	04N23W16C04S	3.9	101.9	68.9	39.3	44	DOWN 4.
	(July 1949-present)	(3/1983)	(12/2016)	(3/5)	(3/20)	(3/2)	
Ojai Valley	04N22W05L08S	38.2	312	203.1	160.1	142.9	UP 17.2
	(Oct.1949 - Present)	(4/1978)	(9/1951)	(3/1)	(4/1)	(3/3)	
Mound (Measured by UWCD)	02N22W07M02S	126.6	176.2	166.1	173.7	171.9	UP 1.8
	(Apr.1996-present)	(4/1998)	(4/1996)	(3/15)	(3/6)	(3/12)	
Santa Paula	02N22W02C01S	20.7	51.9	52.7	45.1	46.2	DOWN 1.
	(Oct.1972-present)	(4/1983)	(12/1991)	(3/19)	(3/12)	(3/6)	
Fillmore	03N20W05D01S	107.8	163.7	143.5	131.8	131.9	DOWN 0.1
	(Oct.1972 - Present)	(2/1979)	(1219/77)	(3/19)	(3/12)	(3/6)	
Piru	04N19W25C02S	43.1	183.2	100.1	94.6	71	UP 23.6
	(Sep.1961-present)	(3/1993)	(10/1965)	(3/19)	(3/11)	(3/9)	
Lockwood Valley	08N21W33R03S	17.5 ft.	59.6 ft.	53.8	52.3	59.6	DOWN 7.3
	(April1966-present)	(9/1998)	(4/2020)	(4/4)	(4/19)	(4/24)	
Cuyama Valley	07N23W16R01S	15.0	47.5	43.8	26.1	24.7	UP 1.4
	(Mar.1972-present)	(4/1993)	(9/1990)	(4/4)	(4/19)	(4/24)	

Table 6-1: Key water level changes in feet below ground surface for 2020.

Data prepared: 3/12/2021 The following summary is based on information gathered from key wells as shown in Table 5-1.

The Forebay Management Area of the Oxnard Subbasin responds quickly to seasonal and annual changes in precipitation and recharge. The Forebay Area key well (UWCD monitoring well) was down 2.6 feet from the 2019 spring measurement.

The water level in the Oxnard Subbasin, Oxnard Aquifer key well was up 6.7 feet from the previous spring. The water level in the Oxnard Subbasin, Fox Canyon Aquifer key well was down 6.7 feet from the 2019 spring measurement.

In the Pleasant Valley lower aquifer system, the water level in the key well was up 7.4 feet from spring 2019.

In the Las Posas Valley Basin, the EMA key well water level was up 8.0 feet from 2019. The key well for the WMA was down 2.5 feet from 2019.

In the Arroyo Santa Rosa Valley Basin, the water level was up 1.8 feet from 2019. The water level in the Simi Valley Basin key Well was up 0.5 feet from 2019. The water level in the Simi Valley key well has been on a downward trend over the last ten years (2011-2020).

In the northern portion of the Upper Ventura River Subbasin, the water level in key Well No. 04N23W16C04S was down 4.7 feet from 2019. In the Ojai Valley Basin, the water level in key Well No. 04N22W05L08S was up 17.2 feet from 2019. The Ojai Valley Basin responds quickly to rainfall or the lack of rainfall, and it is not uncommon to see large drops in water levels during dry periods and recovery at, or above, normal levels during wet periods (see Hydrograph in **Appendix B**).

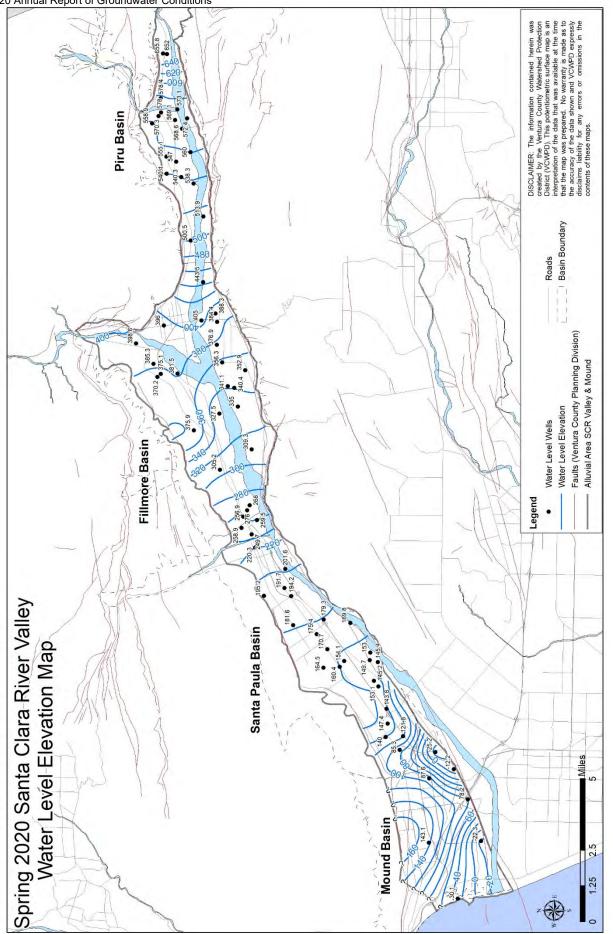
The subbasins that underlie the Santa Clara River Valley also respond quickly to fluctuations in annual rainfall. The water level elevation in the Piru Subbasin key well was up 23.6 feet from 2019. The water level in the Fillmore Subbasin key well was down 0.1 feet, and in the Santa Paula Subbasin the water level in the key well was down 1.1 feet from 2019. In the Mound Subbasin the water level in key Well No. 02N22W07M02S was up 1.8 feet from 2019.

In the northern half of the County, the Lockwood Valley Basin key Well No. 08N21W33R03S was down 7.3 feet from 2019. The water level in the Cuyama Valley Basin key Well No. 07N23W16R01S was up 1.4 feet from 2019.

Potentiometric Surface Maps

Potentiometric surface maps, also referred to as groundwater elevation maps, are used to visually represent groundwater elevations over broad areas. Maps are derived from groundwater elevation data for collected in spring and fall periods at County gauged wells and at wells measured by other organizations/agencies.

Generalized potentiometric surface maps created from 2020 groundwater elevation data include:


- a) The Santa Clara River Valley Basin,
- b) The UAS of the Oxnard Subbasin and Pleasant Valley Basin, and
- c) The LAS of the Oxnard Subbasin, Pleasant Valley, and Las Posas Valley Basins.

Figures 6-5 and 6-6 depict the Santa Clara River Valley Basin that encompasses the Mound, Santa Paula, Fillmore and Piru groundwater Subbasins. The basin area was truncated to include only the extent of the alluvial area of the valley instead of the full groundwater basin boundary.

Figures 6-7 and 6-8 depict the UAS of the Oxnard Subbasin and Pleasant Valley Basin area.

In the Pleasant Valley Basin, the UAS is not typically present, but there are areas of shallow alluvial sediments similar to Oxnard and Mugu Aquifer units from which wells are extracting groundwater. Well data from the perched or semi-perched zone of the Oxnard Subbasin was not used to generate these contours. Some water levels represent confined conditions.

Figures 6-9 and 6-10 depict the LAS of the Oxnard Subbasin, Pleasant Valley and Las Posas Valley Basins. The Moorpark anticline was used in previous Annual Reports as a boundary between the East and South Las Posas Basins. The South Las Posas Basin is no longer recognized and the Las Posas Valley Basin is divided into the East and West Las Posas Management Areas (ELPMA and WLPMA, respectively). The potentiometric surface is mapped to reflect a "no-flow" barrier between the ELPMA and WLPMA. Data from wells perforated in the shallow sand and gravel zones of the Las Posas Valley were not used to generate these contours.

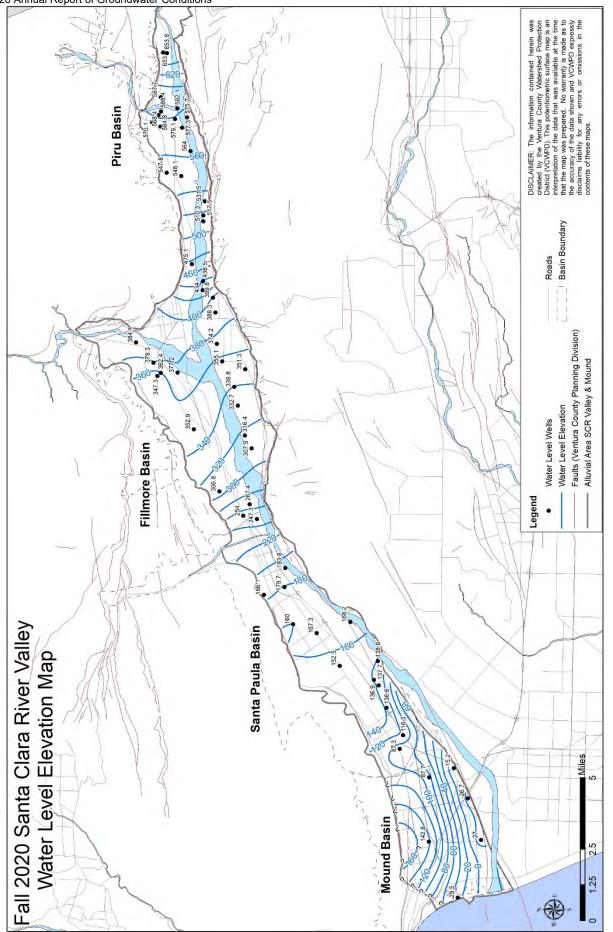


Figure 6-6: Water level surface elevation contours for the Santa Clara River Valley Basin for fall 2020.

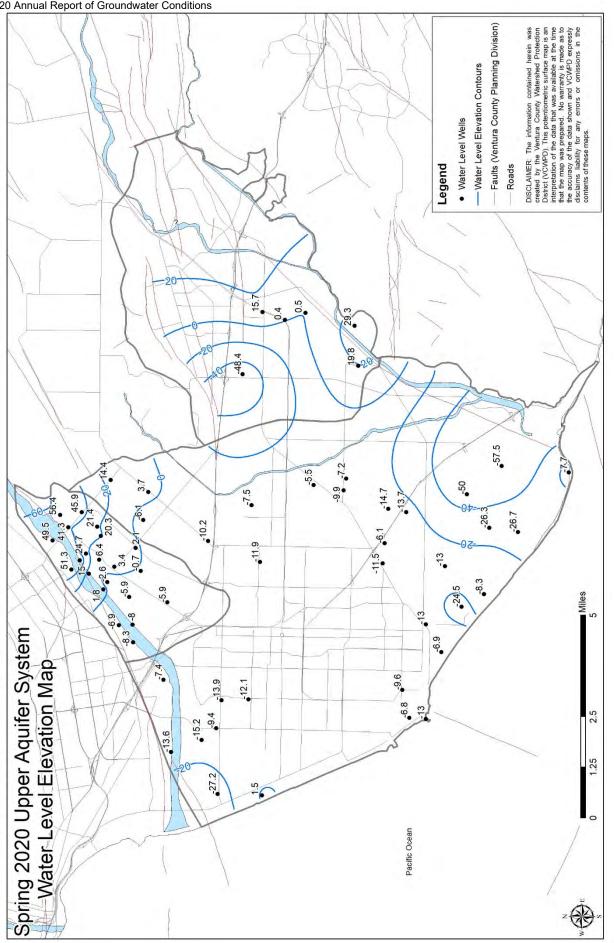


Figure -7: Water level surface elevation contours for the Upper Aquifer System for spring 2020.

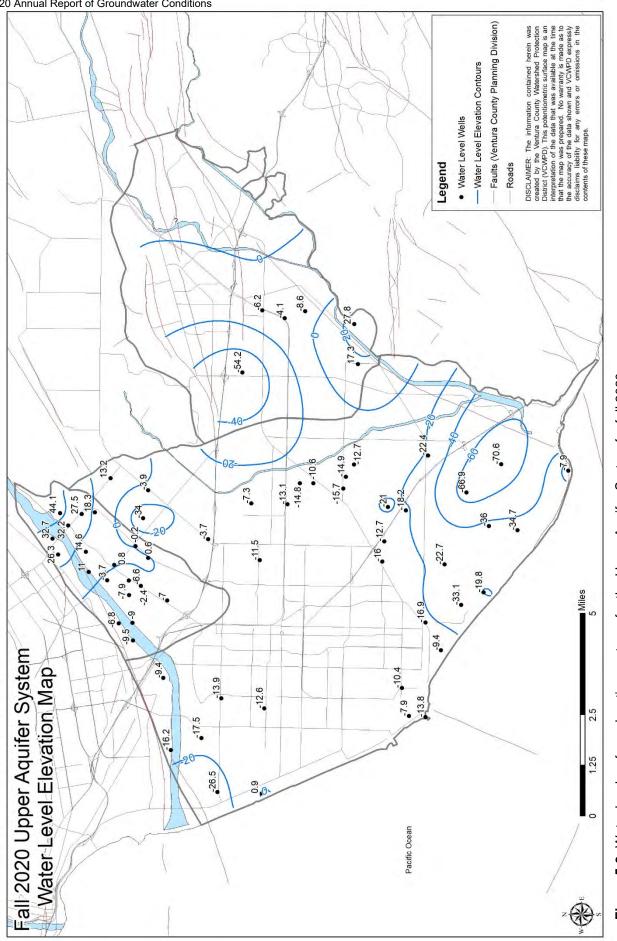
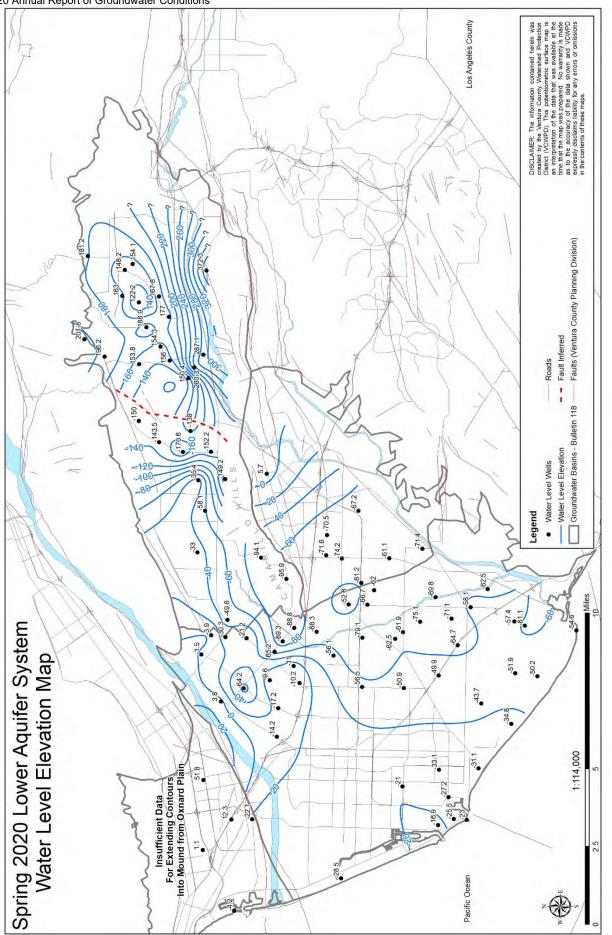
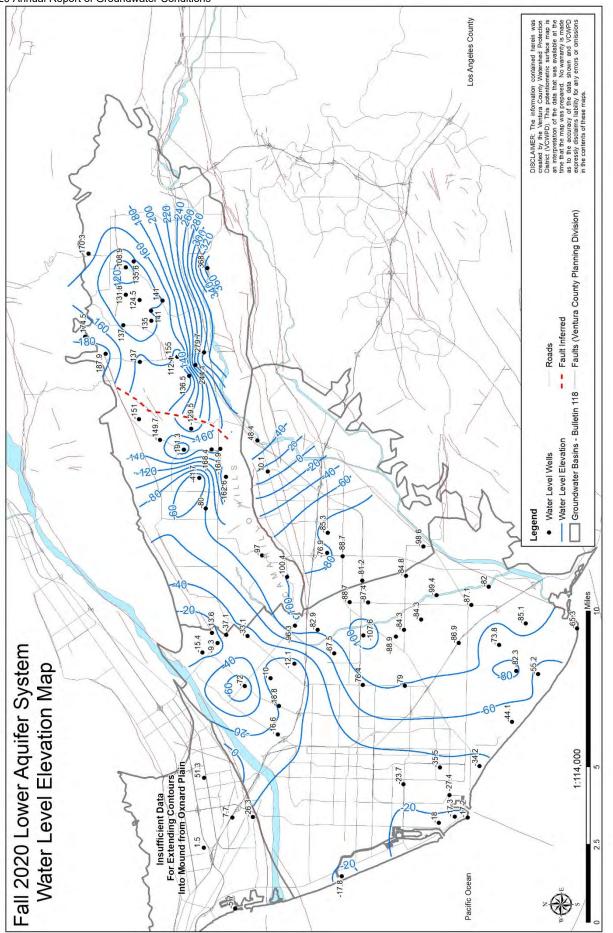




Figure 5-8: Water level surface elevation contours for the Upper Aquifer System for fall 2020.

California Statewide Elevation Monitoring Program (CASGEM)

The CASGEM Program was developed by the DWR in response to the passing of Senate Bill X7 6 and Assembly Bill 1152 in November 2009. The law directs that groundwater elevations in all basins and subbasins in California be regularly and systematically monitored, preferably by local entities, with the goal of reporting seasonal and long-term trends in groundwater elevations. DWR is directed to make the resulting information available to the public. The CASGEM program established a permanent, locally-managed system to monitor groundwater elevation in California's alluvial groundwater basins and subbasins identified in DWR Bulletin No. 118. The CASGEM program relies and builds on locally established, long-term groundwater monitoring and management programs.

VCWPD acts as the Umbrella Monitoring Entity for Ventura County by coordinating and reporting groundwater elevation data collected by multiple agencies within a basin. The Groundwater Section staff collect groundwater level data quarterly or semi-annually, depending on location. Water level data is compiled and uploaded to the CASGEM website.

7.0 Water Supplies

Groundwater Extractions

There are approximately 3,500 active wells in the County that extract groundwater for agricultural, domestic, municipal and industrial uses. Three groundwater management agencies (GMAs) (FCGMA, OBGMA, and UWCD) in Ventura County oversee groundwater extractions within their statutory boundaries (**Figure 7-1**).

Of the total active wells in the County, approximately 2,000 are within one or more of these agency boundaries. Owners and operators within the boundaries of a GMA are required to report groundwater extractions to their respective agency. Owners outside of a groundwater management agency boundary are not required to report extractions but are asked to report well statuses to the County through an *Annual Water Well Usage Statement*.

The FCGMA reports that approximately 60% of groundwater extracted within the Agency is used for agricultural purposes with the remaining 40% for municipal, industrial and domestic uses. **Table 7-1** compares extractions reported to the three agencies for the years 2011 through 2020. Wells located in overlapping agency boundaries must report their extractions to two agencies. This leads to uncertainty in the total volume of groundwater extracted in the County because the reported extractions cannot be combined. **Figure 7-1** shows the overlap area of the FCGMA and UWCD.

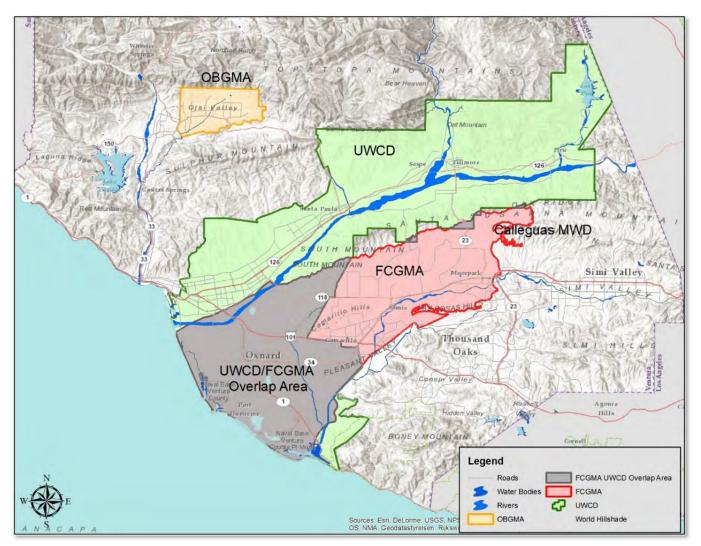


Figure 7-1: Groundwater Management Agencies in Ventura County.

	· · · ·	Agency	
Reported Extractions (AF)	UWCD	FCGMA	OBGMA
2011-1	72,940.07	54,357.81	2,050.00
2011-2	86,560.99	65,877.62	3,099.00
Annual Total 2011	159,501.06	120,235.43	5,149.00
2012-1	78,716.61	59,904.02	2,845.56
2012-2	99,285.26	75,327.91	2,559.40
Annual Total 2012	178,001.87	135,231.94	5,404.96
2013-1	87,336.86	64,751.13	2,805.76
2013-2	116,708.94	88,957.84	2663.216
Annual Total 2013	204,045.80	153,708.97	5,468.97
2014-1	101,577.29	85,233.43	2,232.15
2014-2	101,468.80	65,731.43	2,144.20
Annual Total 2014	203,046.09	150,964.86	4,376.35
2015-1	85,905.46	71,411.15	1,817.92
2015-2	107,590.82	70,810.82	1,901.51
Annual Total 2015	193,496.28	142,221.97	3,719.43
2016-1	82,315.09	69,823.38	1,461.22
2016-2	100,801.24	64,323.08	1,424.93
Annual Total 2016	183,116.33	134,146.46	2,886.1
2017-1	69,854.68	58,467.95	1,659.09
2017-2	113,402.30	72,062.56	2,855.32
Annual Total 2017	183,256.98	130,530.51	4,514.4
2018-1	75,041.90	64,063.56	
2018-2	94,195.78	62,312.00	
Annual Total 2018	169,237.68	123,419.79	4,224.03
2019-1**	57,335.53	51,722.44	
2019-2**	91,649.71	61,986.53	
Annual Total 2019**	148,985.24	113,708.97	4,465.9
2020-1**	65,245.38	58,531.81	
2020-2**	99,735.12	38,299.34	
Annual Total 2020**	164,980.50	96,831.14	4,637.82
UWCD as 07/22/2021		FCGMA as of 07/20/	/2021

Table 7-1: Groundwater	extractions within	reporting agencies	2011 through 2020 ^{8,9,12}

**Values are subject to change. For the most up to date data please contact the respective agency.

 ⁸ Data courtesy of FCGMA.
 ⁹ Data courtesy of OBGMA.

Wholesale Districts

Surface and imported water is supplied by three wholesale water districts in the County (Figure 7-2):

- 1. Casitas Municipal Water District (Casitas),
- 2. Calleguas Municipal Water District (Calleguas), and
- 3. United Water Conservation District (UWCD).

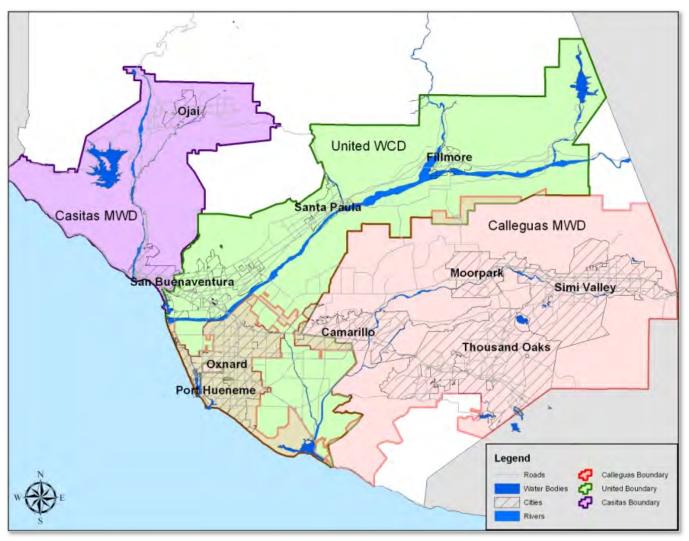
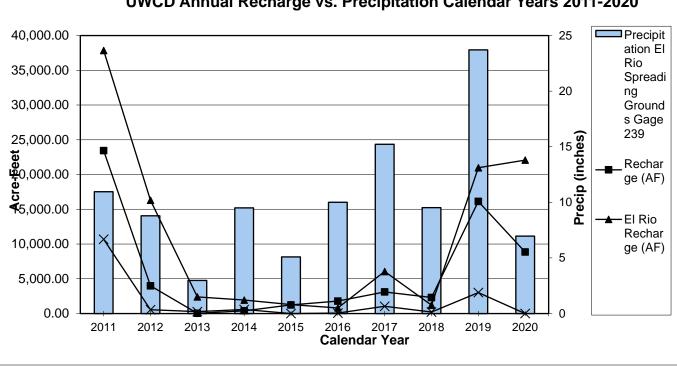


Figure 7-2: Wholesale Water District Boundary Map.

Calleguas delivers the largest volume of water to retailers. Approximately 75% of the population in the County receives a mix of imported State Water Project (SWP) water and Colorado River water from Calleguas. Water from the SWP comes from Northern California by way of an extensive water system owned and operated by the Metropolitan Water District (MWD) of Southern California, a regional wholesaler. MWD supplies imported water to Calleguas. Calleguas imported a total of 90,434.6 AF of treated water in 2020. Calleguas delivered 89,631.5 AF of water to retailers in 2020 compared to 82,237.10 AF in 2019. Production from the District's Aquifer Storage and Recovery (ASR) wellfield was 378.78 AF in 2020. Some imported water is also injected in the East Las Posas Management Area through the Las Posas (ASR) Project. In the ASR wellfield 1,229.65 AF of water was injected in 2020. Up to 11,000 AF of water can be stored by Calleguas in Lake Bard and supply the District's needs for short periods of time.

The end of year water volume in storage in Lake Bard was 10,020 AF¹⁰. The Las Posas Basin ASR wellfield currently has 18 wells, operated by Calleguas. The wells are 800 to 1,200 feet deep and perforate the Fox Canyon Aquifer (Calleguas 2007).


UWCD delivered 22,635 AF of water to retailers and end-users in 2020, up from 16,689 AF in 2019. UWCD can store up to 87,000 AF of water in Lake Piru. At the end of 2020 there was 15,043 AF of stored water in Lake Piru. UWCD released 48,163 (*preliminary data*) AF of water from the lake in 2020. UWCD imported 6,625 AF of SWP water into Ventura County from Pyramid Lake in 2020. Water released from Lake Piru flows down Piru Creek to the Santa Clara River where it is ultimately diverted downstream at the Freeman Diversion Dam. UWCD operates spreading basins in the Oxnard Basin Forebay Management Area for the purpose of groundwater recharge. Some of the water diverted from the Santa Clara River at the Freeman Diversion is sent to the Forebay spreading basins in Saticoy and El Rio, the remainder is sent through the Pleasant Valley Pipeline (PVP) and the Pumping Trough Pipeline (PTP). **Table 7-2** and **Figure 7-3** compare the volume of water diverted and sent to spreading grounds by UWCD¹¹. Annual precipitation for the period of 2011 to 2020 is also shown, however recharge to basins is a function of SWP deliveries and restrictions from other agencies.

CY Year	Precipitation El Rio Spreading Grounds Gage 239(in.)	Saticoy Recharge (AF)	El Rio Recharge (AF)	Noble Pit (AF)
2010	22.07	15,108	30,125	995
2011	10.95	23,435	37,845	10,679
2012	8.79	3,985	16,293	538
2013	2.97	34	2,389	263
2014	9.50	387	1,935	578
2015	5.09	1,231	1,285	0
2016	10.00	1,784	806	59
2017	15.22	3,100	6,043	1,036
2018	9.52	2,301	1,205	212
2019	23.71	16,121	20,976	3,008
2020	6.96	8,847	22,075	0

Table 7-2	2: Comparison of	precipitation	n versus recharge	water volume by	y Calendai	r Year for UWCD.

¹⁰ Data provided courtesy of Calleguas MWD.

¹¹ Data provided courtesy of UWCD is preliminary and subject to change per UWCD. Freeman Diversion data from UWCD operations logs.

UWCD Annual Recharge vs. Precipitation Calendar Years 2011-2020

Figure 7-3: Graph depicting precipitation versus recharge for UWCD 2011-2020.

Casitas delivered approximately 11,842 AF in 2020, with 3,095 AF sold to retail water purveyors. The district provides water to residential and agricultural customers, and some of the 23 water purveyors located within the district's boundaries. Annual water deliveries can vary from 8,000 to 23,000 AF. Casitas provides a blend of groundwater and surface water to its customers. Surface water is stored in Lake Casitas which has an overall capacity of 238,000 AF. At the end of 2020, 93,464 AF of water was stored in the lake. Water from the Ventura River is diverted at the Robles Diversion facility. The facility diverts high flows from rainstorms and operates on average only 53 days per year. Casitas diverts, on average 31% of the Ventura River flow, with 10% of that volume being redirected downstream through the Robles Diversion Fish Passage for the endangered steelhead trout and to enhance recovery of the Ventura River habitat¹².

¹² Data provided courtesy of Casitas MWD.

	Total Water Deliveries in Acre Feet (AF)				
Year	Casitas MWD	Calleguas MWD	United WCD	Annual Total	
2011	13,439	97,218	31,868	142,525	
2012	15,268	104,104	32,638	152,010	
2013	18,270	111,283	24,358	153,911	
2014	18,336	106,293	17,492	142,121	
2015	16,272	89,045	16,293	121,609	
2016	12,793	87,542	16,757	117,092	
2017	12,166	89,666	16,613	118,445	
2018	12,168	91,340	16,953	120,461	
2019	8,490	82,237	16,689	107,416	
2020	11,842	89,632	21,048	122,522	
Period Total	139,045	948,360	210,709	1,298,113	

Table 7-3: Comparison of wholesale district water deliveries 2011-2020.

Surface Water

Surface water resources can be hydrologically linked to groundwater resources. The connection between surface water and groundwater is understood by natural recharge of aquifers from surface water (losing streams), and discharge of groundwater to surface water (gaining streams). Surface water diversions allow for use of surface water instead of extracted groundwater. Surface water is used to artificially recharge groundwater.

Figure 7-4 shows the volume of stored surface water and diverted surface water. In 2020, UWCD released approximately 48,163 AF of water from Lake Piru, including a fish passage requirement of 5 cubic feet per second (cfs) per day. UWCD diverted 30,922 AF from the Santa Clara River at the Freeman Diversion Dam with 8,847 AF sent to the Saticoy Spreading Grounds, 22,075 AF sent to the El Rio Spreading Grounds and 0 AF sent to the Noble Pit, with some surface water also going to agricultural customers through the PTP and the PVP. At the end of 2020 there was 15,009 AF of water in storage in Lake Piru, 93,464 AF in Lake Casitas and 10,020 AF in Lake Bard. Casitas releases 3,200 AF per year from Lake Casitas for the Robles Diversion Fish Passage.

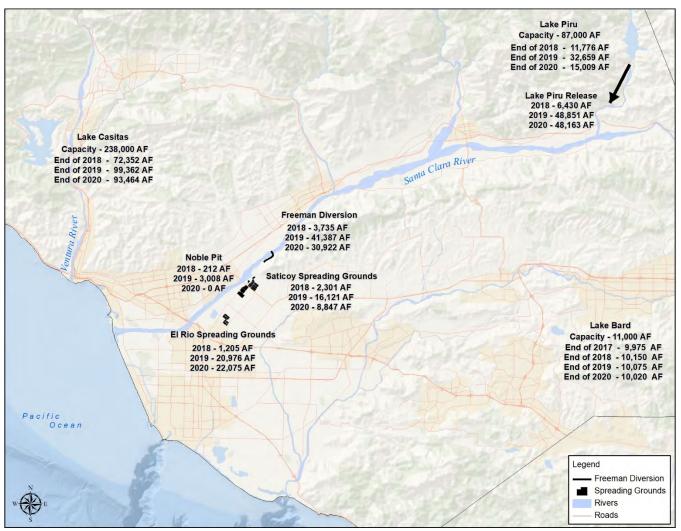


Figure 7-4: Surface water storage and diversion map^{11, 12, 13}.

Surface & Imported Water Demands

Of the ten incorporated cities within Ventura County only Santa Paula and Fillmore do not rely on water supplied by the three major wholesale districts.

The cities of Ventura and Oxnard use a blend of imported water, groundwater and treated surface water to meet demands. The City of Ventura's water supply comes from treated water diverted from the Ventura River, groundwater extracted from City wells and surface water from Lake Casitas delivered by Casitas. The City of Oxnard receives water from UWCD, imported water from Calleguas Municipal Water District and groundwater from City well fields.

In the southern half of the County, the cities of Simi Valley, Moorpark and Thousand Oaks as well as the communities of Bell Canyon, Newbury Park, Hidden Valley, Lake Sherwood, Oak Park and part of Westlake Village rely mainly on water imported from Calleguas.

The City of Simi Valley receives water from Ventura County Water Works District No. 8 (VCWWD8). VCWWD8 extracts groundwater from three wells in the Tapo Canyon area. Groundwater is also extracted from several dewatering wells at the west end of the city which is discharged to the Arroyo Simi. The Tapo Canyon Water Treatment Plant, a one-million gallon per day (MGD) facility, utilizes the three Tapo Canyon wells to provide water to approximately 500 homes. Golden State Water Company (GSWC) in Simi Valley extracts groundwater from one well and blends it with imported water from Calleguas (10% groundwater, 90% imported water)¹³. VCWWD8 serves 68% of demand or approximately 23,000 AF of water while GSWC serves the remaining 32%, approximately 8,500 AF¹⁴. In 2020 Calleguas delivered 19,727 AF to VCWWD8 and 5,353 AF to GSWC.

The City of Moorpark residents receive water from Ventura County Water Works District No. 1 (VCWWD1). Approximately 75-80% of VCWWD1's water is imported from Calleguas. In 2020, Calleguas delivered 7,355 AF to VCWWD1. The City also extracts groundwater from two wells used for park irrigation.

The City of Thousand Oaks extracts groundwater using it for median irrigation on Hillcrest Ave. and golf course irrigation at the Los Robles Golf Course. California Water Service and California American Water along with the City of Thousand Oaks Water Department provide water imported from Calleguas in the Thousand Oaks, Newbury Park and Westlake Village area. According to the *City of Thousand Oaks 2015 Urban Water Management Plan*, the City supplies water to approximately 36% of water users, California American Water 48%, and California Water Service Company 16%. In 2020, these three water purveyors received 32,689 AF of water from Calleguas.

The City of Camarillo relies on groundwater and imported water from Calleguas. The city extracts groundwater from four wells, supplying approximately 40-50% of the city's water demand with the remaining demand supplied by imported water. The city must keep its groundwater extraction volume below the groundwater extraction allocation from the FCGMA. In 2020, Calleguas delivered 4,460 AF of water to the City of Camarillo. Water for some residents is supplied by Pleasant Valley Mutual (groundwater and imported water), Crestview Mutual (groundwater and imported water), California American Water Co. (imported water), and Camrosa Water District (groundwater and imported water).

The Port Hueneme Water Agency receives and treats water from UWCD and blends it with water from Calleguas for the City of Port Hueneme, Channel Islands Beach Services Community District and Naval Base Ventura County.

¹³ Golden State Water Company, 2015 Urban Water Management Plan – Simi Valley.

¹⁴ Ventura County Waterworks District No. 8, City of Simi Valley, 2015 Urban Water Management Plan.

In the Ojai Valley, the City of Ojai and the communities of Casitas Springs, Meiners Oaks and Oak View rely on a mixture of groundwater extracted by local purveyors, and wholesale water from Lake Casitas delivered by Casitas Municipal Water District to local water purveyors.

In the Santa Clara River Valley area, the City of Santa Paula relies on local groundwater (approximately 5,000 to 7,000 AF/yr based on reporting to UWCD). In addition, some surface water is diverted from Santa Paula Creek (approximately 500 AF/yr)¹⁵ and is sent to Canyon Irrigation Company in exchange for extraction credits for the Santa Paula Basin. The City of Fillmore relies solely on groundwater extracted from City water wells (approximately 2,600 to 2,800 AF/yr based on reporting to UWCD). The community of Piru relies on groundwater delivered by local water purveyors.

Residents of the Lockwood Valley area and the Santa Monica Mountains area, as well as residents living in areas not served by a water company rely on private domestic water wells. Water is extracted from groundwater basins, or from water-bearing units (fractured volcanic rock and bedrock) in areas outside of groundwater basins.

¹⁵ Data from City of Santa Paula 2015 Urban Water Management Plan

8.0 Sustainable Groundwater Management Act (SGMA)

On January 1, 2015, the Sustainable Groundwater Management Act (SGMA) became effective. SGMA is a comprehensive three-bill package that establishes a new structure for local authorities to sustainably manage their groundwater basins. Sustainable management under the act is defined as the management and use of groundwater in a manner that can be maintained without causing "significant and unreasonable undesirable results."

SGMA requires the formation of local groundwater sustainability agencies (GSAs) in all DWR Bulletin No. 118 basins designated as high or medium priority. GSAs must assess conditions in their respective water basins and adopt a groundwater sustainability plan (GSP) that ensures the basin will be sustainably managed within 20 years, with interim milestones subject to state review every five years. Basins additionally defined as critically-overdrafted must submit a GSP by January 31, 2020; other high and medium priority basins must be managed under a GSP by January 31, 2022. GSAs can be formed in low-priority basins, but SGMA does not require it.

Critically Overdrafted Basins

SGMA states a basin is subject to critical overdraft "when continuation of present water management practices would probably result in significant adverse overdraft-related environmental, social, or economic impacts." Undesirable impacts result from conditions of critical overdraft which include seawater intrusion, land subsidence, groundwater depletion, and/or lowering of groundwater levels. SGMA directed the DWR to identify critically overdrafted groundwater basins and subbasins. DWR identified a statewide base period from 1989 to 2009 for evaluation that included wet and dry periods. A basin is placed in critical overdraft when the basin has one or more undesirable impacts. DWR compiled a list of 21 critically overdrafted basins and subbasins in January 2016. Three are in Ventura County (**Figure 8-1**). Those basins are the Cuyama Valley Basin (Bulletin 118 No. 3-013), the Pleasant Valley Basin (Bulletin 118 No. 4-006), and the Oxnard Subbasin (Bulletin 118 No. 4-004.02).

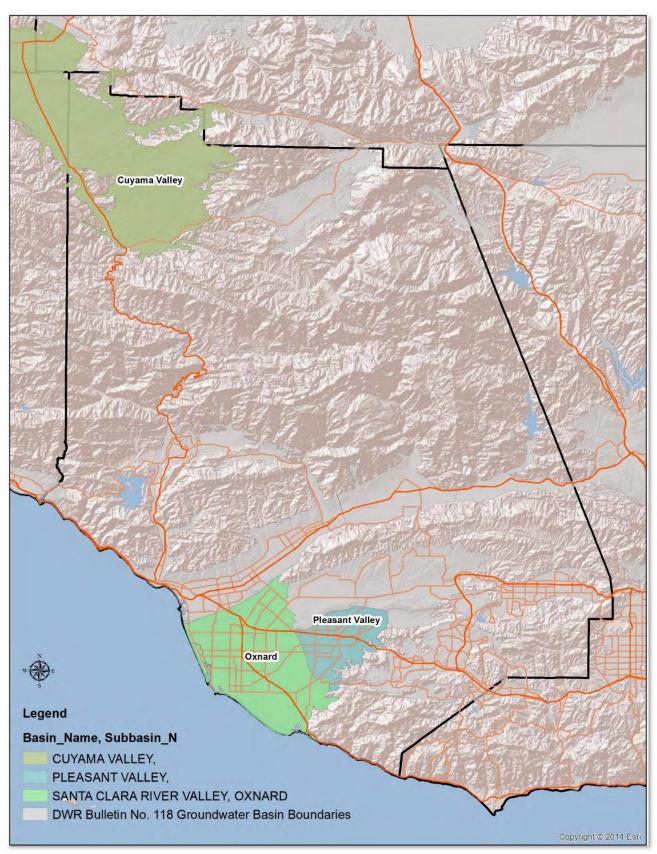


Figure 8-1: Critically overdrafted basins in Ventura County.

High & Medium Priority Basins in Ventura County

DWR's Basin Prioritization is a technical process that utilizes the best available data and information to classify California's 515 groundwater basins into one of four categories: high-, medium-, low-, or very-low priority. Each basin's priority determines which provisions of California Statewide Groundwater Elevation Monitoring (CASGEM) and SGMA apply. SGMA requires medium- and high-priority basins to develop GSAs, develop GSPs and manage groundwater for long-term sustainability.

As of May 2014, 127 of the 517 basins were ranked as medium and high priority basins. Those 127 medium and high priority basins account for 96% of California's annual groundwater extraction. Ventura County has a total of four high priority and seven medium priority basins (**Figure 8-2**).

New priority rankings were completed by DWR in late 2019.

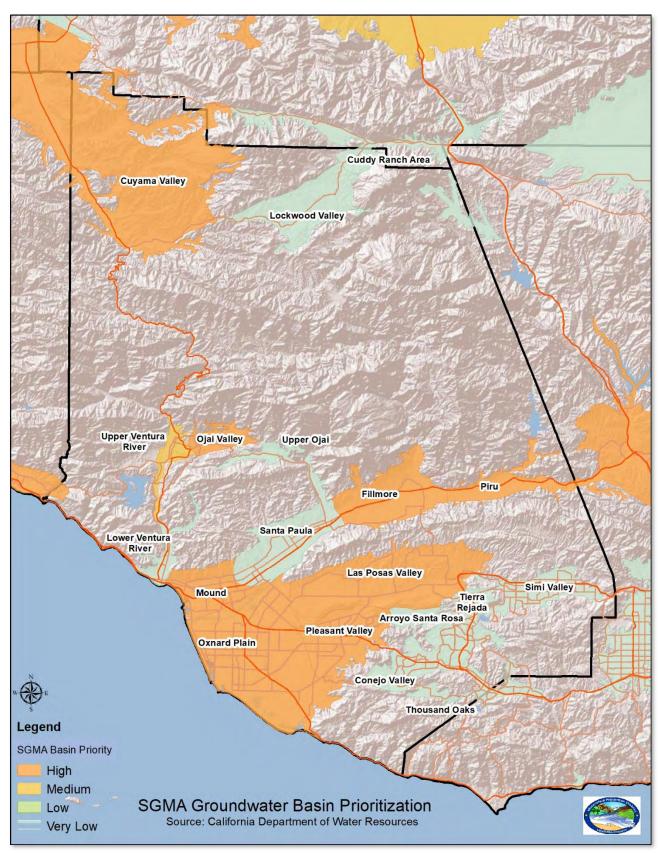


Figure 8-2: 2019 Final SGMA B118 basin prioritization.

Adjudicated Basins

Santa Paula Basin

The Santa Paula Basin (Bulletin 118 Basin No. 4-004.04) is currently the only adjudicated basin in Ventura County. Adjudicated basins do not need a GSA but must still provide groundwater measurements to DWR.

Santa Paula Basin's groundwater rights were adjudicated in 1996 in a stipulated judgement to establish pumping allocations and a management plan for the basin. The judgment awarded 27,500 acre-feet of groundwater rights to the SPBPA to be held in trust for the benefit of its members. Each member is entitled to an "Individual Party Allocation" (IPA) that establishes a maximum quantity of water that can be extracted from the basin. The judgment also includes cut back provisions that can be implemented as necessary to balance total production within the basin's safe yield.

A Watermaster is usually appointed by the court to ensure the basin is managed in accordance with the court's decree. A Technical Advisory Committee (TAC) acts as the Watermaster for the Santa Paula Basin with equal representation from UWCD, the SPBPA and the City of San Buenaventura. The TAC also determines the safe yield of the basin, along with the development and implementation of a basin management plan. Annual reports of the monitoring program are submitted to the TAC for review and approval. The primary groundwater management objective in the Santa Paula Basin is to ensure that production does not exceed the long-term sustainable yield of quality groundwater for current and future uses.

Groundwater Sustainability Agencies (GSA's)

GSAs are responsible for developing and implementing a GSP to ensure the basin meets its sustainability goal by operating within its sustainable yield without creating undesirable results. Before DWR will accept and review submitted GSPs, a basin must be managed under a GSA or multiple GSAs. GSAs for all medium- and high-priority basins in Ventura County have been formed and there are no "unmanaged areas.¹⁶" Below are all GSA's in Ventura County.

Arroyo Santa Rosa Basin GSA

The County of Ventura and the Camrosa Water District (Camrosa) entered into a Joint Exercise of Powers Agreement (JPA) to manage the portion of the Arroyo Santa Rosa Basin (DWR Basin No. 4-007) outside of the FCGMA boundary. The JPA was approved by the Ventura County Board of Supervisors on October 4, 2016, officially forming the Arroyo Santa Rosa Basin GSA. The western area of the Arroyo Santa Rosa Basin will be managed by the FCGMA and the eastern portion by the Arroyo Santa Rosa Basin GSA.

Camrosa Las Posas Basin GSA

The majority of the Las Posas Valley Basin (DWR Basin No. 4-008) falls under the jurisdiction of the FCGMA. However, a 4.5-mile section along the southern border is outside of the FCGMA boundaries and will be managed by Camrosa. Camrosa delivers potable and non-potable water to residential and agricultural customers in that area and filed to act as the GSA for that portion of the basin on June 28, 2017.

Camrosa OPV Management Area GSA

Camrosa also filed to act as the GSA for the portions of the Oxnard Subbasin (DWR Basin No. 4-004.02) and the Pleasant Valley Basin (DWR Basin No. 4-006) outside of the FCGMA boundary on June 28, 2017. Camrosa will be the GSA for areas that lie within their service area but are outside of the FCGMA boundaries. The Subbasin and Basin were identified as high-priority basins in 2014 through the CASGEM prioritization process.

Cuyama Basin GSA (CBGSA)

The Cuyama Basin (DWR Basin No. 3-13) underlies portions of three counties, Santa Barbara County, Kern County and Ventura County. On June 12, 2017, the CBGSA posted notice to act as the GSA for the entire basin. The CBGSA is a joint powers authority comprised of six local agencies: the Cuyama Basin Water District, Cuyama Community Services District, Santa Barbara County Water Agency, San Luis Obispo County, Ventura County and Kern County. These six agencies collectively carry water management, water supply, and land use responsibilities across the entire basin.

Fillmore and Piru Basins GSA

The Fillmore and Piru Subbasins (DWR Basin Nos. 4-004.05 and 4-004.06) lie along the Santa Clara River in the eastern portion of Ventura County. On June 28, 2017, the Fillmore and Piru Basins GSA posted notice to act as the GSA for both basins. The Fillmore and Piru Basins GSA is a joint powers authority comprised of UWCD, Ventura County and the City of Fillmore. UWCD is authorized to conduct water resource investigations, acquire water rights, build water storage and recharge facilities, construct wells and pipelines for water deliveries, commence actions involving water rights and water use, and prevent interference with or diminution of stream/river flows. The County exercises water management and land use authority throughout the county, including the Fillmore and Piru Basins. The City of Fillmore is a local municipality that exercises water supply, water management and land use authority within the city's boundaries.

¹⁶ Unmanaged areas are areas in high or medium priority basins in which a local agency has not filed to become a GSA and are not within the service area of another GSA.

Mound Basin GSA (MBGSA)

The MBGSA posted notice with the DWR on June 29, 2017 to be the GSA for the Mound Subbasin (DWR Basin No. 4-004.03). MBGSA is a joint powers authority comprised of three local public agencies: the City of Ventura, Ventura County, and UWCD. The City of Ventura exercises water supply, water management and land use authority within its boundaries. The County exercises water management and land use authority in land overlying the Mound Subbasin. UWCD is authorized to replenish groundwater of the basin and does not extract groundwater.

Fox Canyon Groundwater Management Agency

On February 11, 2015, the FCGMA notified the DWR of their intent to become the exclusive GSA for the Arroyo Santa Rosa Basin, Oxnard Subbasin, Pleasant Valley Basin and the Las Posas Valley Basin. The FCGMA's authority is limited to areas within the portions of the Arroyo Santa Rosa, Oxnard Subbasin, Pleasant Valley and Las Posas Valley Basins that lie within its boundary. The FCGMA is the exclusive GSA for those basins within the agency's statutory boundaries.

Ojai Basin Groundwater Management Agency (OBGMA)

The OBGMA filed a notice of intent to become the exclusive GSA for the Ojai Valley Groundwater Basin on December 6, 2014. The OBGMA submitted an analysis of their basin conditions on December 22, 2016 in lieu of preparing a GSP plan. The basin analysis is under review by the DWR and must demonstrate the basin has operated within its sustainable yield over a 10-year period.

Upper Ventura River Groundwater Agency (UVRGA)

The UVRGA filed a notice of intent to become the GSA for the Ventura River Valley Basin, Upper Ventura River Subbasin on April 21, 2017. The UVRGA is a joint powers authority comprised of five local public agencies: (1) Casitas Municipal Water District, (2) the City of Ventura, (3) Ventura County, (4) Meiners Oaks Water District, and (5) the Ventura River Water District. Prior to GSA formation, the Upper Ventura River Basin boundary was modified, reducing the area.

The County of Ventura

On June 28, 2017, the County notified DWR of their intent to become the GSA for all areas in basins outside of the management of a GSA. The notice was filed to prevent a basin from being designated as a "probationary basin" if unmanaged areas existed after June 30, 2017. There are no unmanaged areas of a basin within the County.

References

American Geological Institute, Alexandria Virginia, Robert L. Bates & Julia A. Jackson, 1987, Glossary of Geology

Calleguas Municipal Water District, Las Posas Basin Aquifer Storage and Recovery Project, http://www.calleguas.com/projects/lpbroc.pdf, 2007

California Department of Water Resources, August 1978, Water Well Standards Ventura County Bulletin No. 74-9

California Department of Water Resources, October 2003, California's Groundwater, Bulletin 118

California Department of Water Resources, December 2016, California's Groundwater, Bulletin 118, Interim Update 2016.

California Regional Water Quality Control Board, Los Angeles Region, June 1994, Water Quality Control Plan, Los Angeles Region

California State Water Resources Board (CSWRB). 1956. Ventura County Investigation. Bulletin 12. Two Volumes.

Camrosa Water District, August 2013, Santa Rosa Basin Groundwater Management Plan, Prepared by MWH, Arcadia, CA 91007

Camrosa Water District, Santa Rosa Mutual Water Company, Property Owners, April 1997, Santa Rosa Basin Management Plan, For areas within the Arroyo Santa Rosa Portion of the Santa Rosa Groundwater Basin not within the boundaries of the Fox Canyon Groundwater Management Agency

City of Thousand Oaks 2010 Urban Water Management Plan, Ventura County, California, June 2011, RBF Consulting County of Ventura Public Works Agency, Flood Control and Water Resources, December 1986, Quadrennial Report of Hydrologic Data 1981-84

County of Ventura Board of Supervisors, December 16, 2014, County of Ventura Ordinance 4468, An ordinance of the County of Ventura repealing and reenacting Ventura County Ordinance Code Section 4811 et seq. relating to groundwater conservation.

County of Ventura Public Works Agency, Flood Control District, June 1971, Hydrologic Analysis Zone 4 1971

County of Ventura Public Works Agency, Flood Control and Water Resources Department, April 1978, North Half Area Hydrologic Balance Study

County of Ventura, Public Works Agency, Watershed Protection District, 2013 Water Supply and Demand, January 2015

Fetter, C.W., 1988, Applied Hydrogeology, Second Edition

Fox Canyon Groundwater Management Agency, May 2007, 2007 Update to the Fox Canyon Groundwater Management Agency Groundwater Management Plan

Fox Canyon Groundwater Management Agency, 2013, Calendar Year 2012 Annual Report Ventura County Watershed Protection District, Water & Environmental Resources Division, Groundwater Section, January 2007, Groundwater Quality Report 2005-2006

State Water Resources Control Board, Title 22 California Code of Regulations Related to Drinking Water, June 2016

Ventura County Department of Public Works, Flood Control District, Las Posas Area Groundwater Quality and Quantity Investigation, August 1971

Ventura County Watershed Protection District, Water & Environmental Resources Division, Groundwater Section, Hydrologic and Geologic Data, (Field and other data in Groundwater Section files).

United Water Conservation District, Santa Paula Basin 2005 Annual Report, Ventura County, California. November 2007.

United Water Conservation District, Hydrogeologic Assessment of the Mound Basin, Open File Report 2012-01, May 2012

Appendices Appendix A – Glossary of Groundwater Terms

<u>Aquifer</u>: A geologic formation or structure that yields water in sufficient quantities to supply pumping wells or springs.

Abandoned Well: Means any of the following:

- (1) A water well used less than 8 hours in any twelve-month period. Failure to submit reports of well usage will result in a well being classified as abandoned.
- (2) A monitoring well from which no monitoring data has been taken for a period of two years.
- (3) A well which is in such a state of disrepair that it cannot be made functional for its original use or any other use.
- (4) An open engineering test hole after 24 hours has elapsed after construction and testing work has been completed on the site.
- (5) A cathodic protection well which is no longer used for its intended purpose.

<u>Confined Aquifer:</u> An aquifer separated from the surface by an aquiclude or an aquitard to the extent that pressure can be created in the lower reaches of the aquifer.

<u>Contamination</u>: Alteration of waters by waste, salt-water intrusion or other materials to a degree which creates a hazard to the public health through actual or potential poisoning or through actual or potential spreading of disease.

Department of Water Resources: (DWR) operates and maintains the State Water Project, including the California Aqueduct. The department also provides dam safety and flood control services, assists local water districts in water management and conservation activities, promotes recreational opportunities, and plans for future statewide water needs.

Fox Canyon Groundwater Management Agency (FCGMA): The Agency created when the California State Legislature enacted and passed State Assembly Bill No. 2995 on Sept. 13, 1982 creating the *Fox Canyon Groundwater Management Agency (GMA)*. This law, also referred to as AB2995, granted jurisdiction over all lands overlying the Fox Canyon aquifer zone to control seawater intrusion, protect water quality, and manage water resources.

<u>Groundwater:</u> Water beneath the surface of the earth within the zone below the water table in which the soil is completely saturated with water.

<u>Groundwater Basin</u>: A geologically and hydrologically defined area containing one or more aquifers, which store and transmit water yielding significant quantities of water to extraction facilities.

Lower Aquifer System (LAS): The area underlying the Oxnard Pressure Basin, which contains the Hueneme aquifer, the Fox Canyon Aquifer and the Grimes Canyon aquifer. The LAS is recharged from the Fox Canyon and Grimes Canyon Outcrops, the areas where the aquifers come to the surface exposing the permeable sands and gravels to recharge from rainfall and surface runoff.

<u>Overdraft</u>: The condition of a groundwater basin or aquifer where the average annual amount of water extracted exceeds the average annual supply of water to a basin or aquifer.

<u>Perched or Semi-Perched Aquifer:</u> The water-bearing area that is located between the earth's surface and clay deposits that exist above an Aquifer.

<u>Receiving Waters:</u> All waters that are "Waters of the State" within the scope of the State Water Code, including but not limited to, natural streams, creeks, rivers, reservoirs, lakes, ponds, water in vernal pools, lagoons, estuaries, bays, the Pacific Ocean, and ground water.

Seawater Intrusion: The overdrafting of aquifers, which results in, the depletion of water supplies, lowering of water levels and degradation from seawater intrusion. Seawater intrusion results from the reversal of hydrostatic pressure allowing water flow to be onshore rather than offshore.

Total Dissolved Solids: (TDS) is a term that represents the amount of all of our natural minerals that is dissolved in water.

Total Maximum Daily Load (TMDL) is a number that represents the assimilative capacity of a receiving water to absorb a pollutant. The TMDL is the sum of the individual waste-load allocations for point sources, load allocations for nonpoint sources plus an allotment for natural background loading, and a margin of safety. TMDL's can be expressed in terms of mass per time (the traditional approach) or in other ways such as toxicity or a percentage reduction or other appropriate measure relating to a state water quality objective. A TMDL is implemented by reallocating the total allowable pollution among the different pollutant sources (through the permitting process or other regulatory means) to ensure that the water quality objectives are achieved.

<u>United Water Conservation District (UWCD)</u>: The District administers a "basin management" program for the Santa Clara Valley and Oxnard Plain, utilizing the surface flow of the Santa Clara River and its tributaries for replenishment of groundwater. Originally established as the Santa Clara River Water Conservation District in 1927.

<u>Upper Aquifer System (UAS)</u>: The area underlying the Oxnard Pressure Basin, which contains the perched and semi-perched zones, the Oxnard aquifer zone, and the Mugu aquifer. The UAS is recharged via the twenty-three square mile unconfined Oxnard Forebay Basin near El Rio.

<u>Water Quality Standards</u>: Defined as the beneficial uses (e.g., swimming, fishing, municipal drinking water supply, etc.) of water and the water quality objectives adopted by the State or the United States Environmental Protection Agency to protect those uses.

<u>Water Well Ordinance No. 4468:</u> The Ventura County Groundwater Conservation Ordinance which was originally adopted by the Board of Supervisors in October 1970 and revised in 1979, 1984, 1985, 1987, 1991, 1999 and most recently in December 2014. The purpose of the ordinance is to ensure that all new or modified water, cathodic protection and monitoring wells are drilled by licensed water well contractors and are properly sealed so that they cannot serve as conduits for the movement of poor quality or polluted waters into useable aquifers or be hazardous to people or animals.

<u>Well Destruction</u>: To fill a well (including both interior and annular spaces if the well is cased) completely in such a manner that it will not produce water or act as a conduit for the transmission of water between any water-bearing formations penetrated.

Well Owner: The owner of the land on which a well is located.

Appendix B – Key Water Level Hydrographs

FIGURES

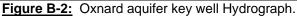

Page

Figure B-1: Map of Key Water Level Wells in Ventura County	121
Figure B-2: Oxnard aquifer key well hydrograph	122
Figure B-3: Oxnard aquifer 10 year level change	122
Figure B-4: Forebay area key well hydrograph	123
Figure B-5: Forebay area 10 year level change	123
Figure B-6: Fox Canyon Aquifer Key Well Hydrograph	124
Figure B-7: Fox Canyon Aquifer Level Change	124
Figure B-8: Pleasant Valley Key Well Hydrograph	125
Figure B-9: Pleasant Valley Level Change	
Figure B-10: West Las Posas Key Well Hydrograph	126
Figure B-11: West Las Posas Basin Level Change	126
Figure B-12: East Las Posas Key Well Hydrograph	127
Figure B-13: East Las Posas Basin Level Change	127
Figure B-14: Santa Rosa Valley Key Well Hydrograph	128
Figure B-15: Santa Rosa Valley Level Change	128
Figure B-16: Simi Basin Key Well Hydrograph	129
Figure B-17: Simi Basin Level Change	129
Figure B-18: Ventura River Basin Key Well Hydrograph	130
Figure B-19: Ventura River Basin Level Change	130
Figure B-20: Ojai Valley Basin Key Well Hydrograph	131
Figure B-21: Ojai Valley Basin Level Change	131
Figure B-22: Mound Basin Key Well Hydrograph	132
Figure B-23: Mound Basin Level Change	132
Figure B-24: Santa Paula Basin Key Well Hydrograph	133
Figure B-25: Santa Paula Basin Level Change	133
Figure B-26: Fillmore Basin Key Well Hydrograph	134
Figure B-27: Fillmore Basin Level Change	134
Figure B-28: Piru Basin Key Well Hydrograph	135
Figure B-29: Piru Basin Level Change	135
Figure B-30: Lockwood Valley Basin Key Well Hydrograph	136
Figure B-31: Lockwood Valley Basin Level Change	136
Figure B-32: Cuyama Valley Basin Key Well Hydrograph	137
Figure B-33: Cuyama Valley Basin Level Change	137

Figure B-1: Map showing key water level wells in Ventura County.

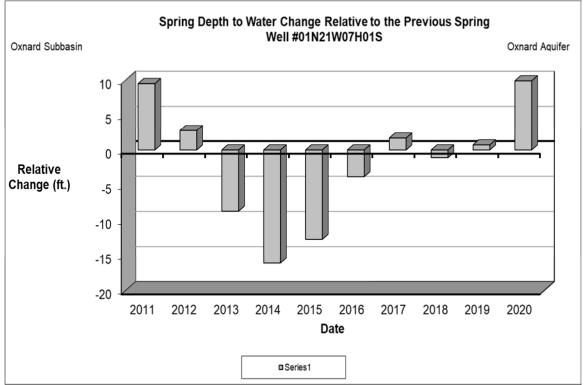
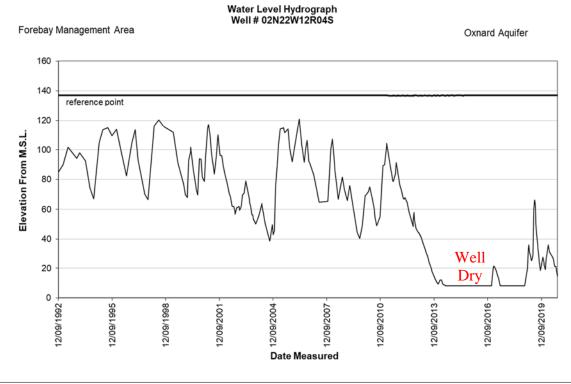



Figure B-3: Oxnard aquifer 10 year spring level change depicted on Up/Down graph.

Figure B-4: Forebay Management Area key well Hydrograph.

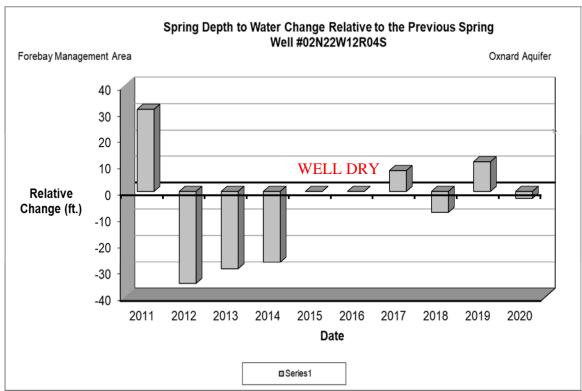
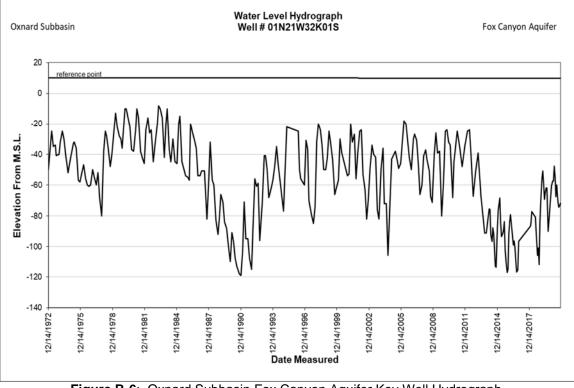



Figure B-5: Forebay Management Area 10 year spring level change depicted on Up/Down graph.

Figure B-6: Oxnard Subbasin Fox Canyon Aquifer Key Well Hydrograph.

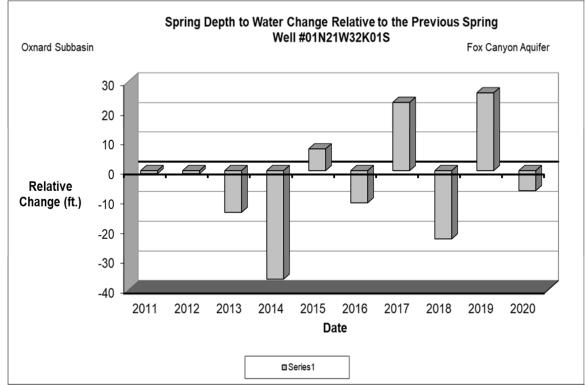
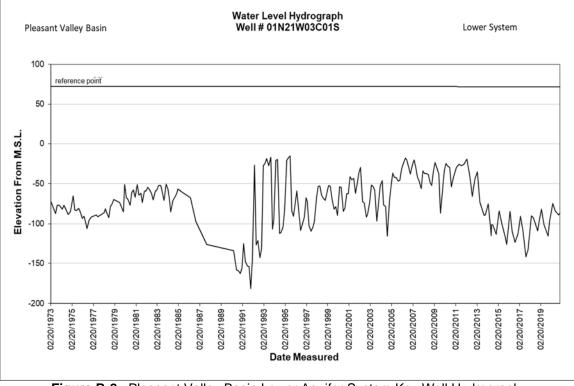
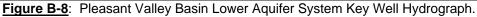




Figure B-7: Oxnard Subbasin Fox Canyon Aquifer 10 year spring level change depicted on Up/Down graph.

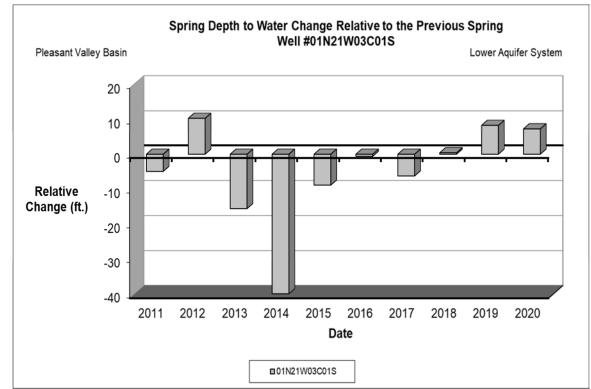


Figure B-9: Pleasant Valley Basin Lower Aquifer System 10 year spring level change depicted on Up/Down graph.

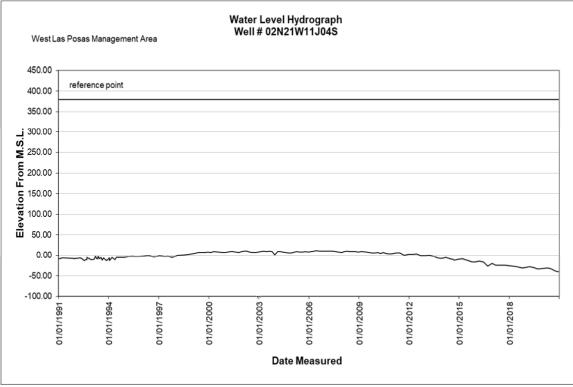


Figure B-10: West Las Posas Management Area Key Well Hydrograph.

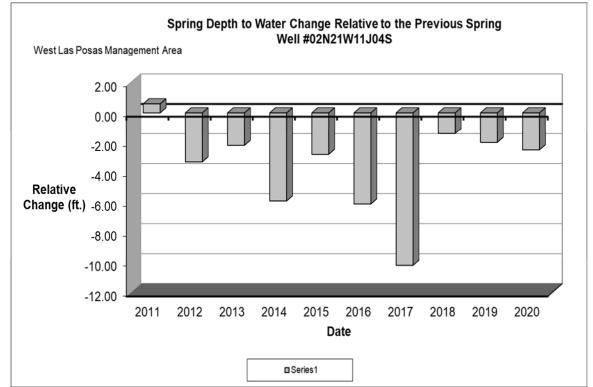


Figure B-11: West Las Posas Management Area 10 year spring level change depicted on Up/Down graph.

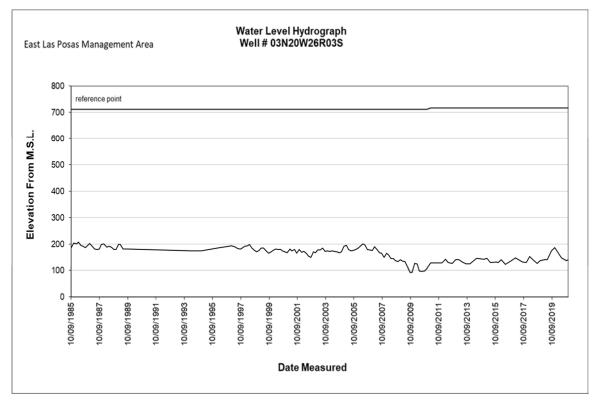


Figure B-12: East Las Posas Management Area Key Well Hydrograph.

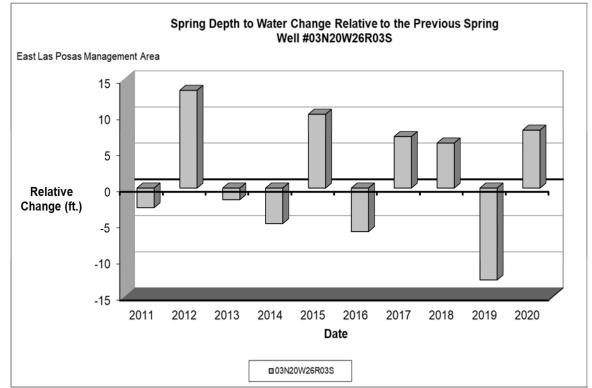


Figure B-13: East Las Posas Management Area 10 year spring level change depicted on Up/Down graph.

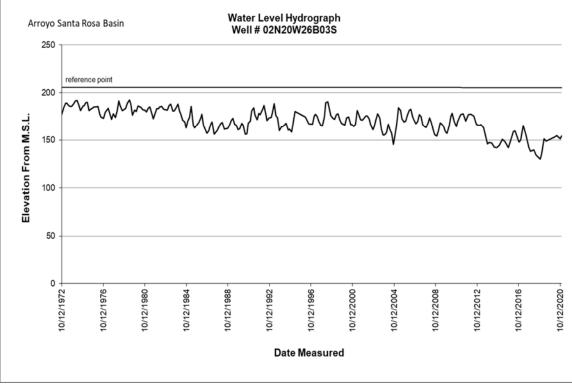


Figure B-14: Arroyo Santa Rosa Basin Key Well Hydrograph.

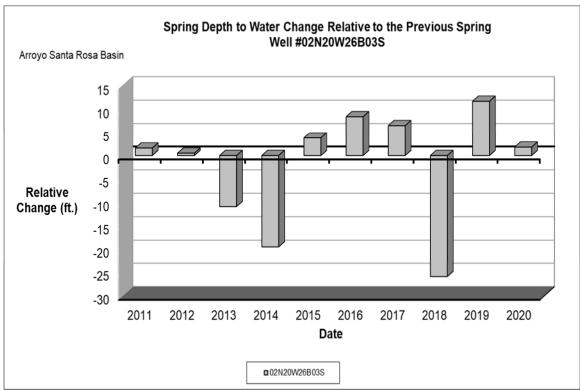
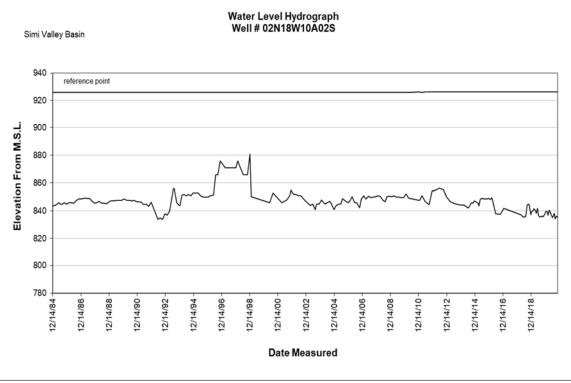




Figure B-15: Arroyo Santa Rosa Basin 10 year spring level change depicted on Up/Down graph.

Figure B-17: Simi Valley Basin 10 year spring level change depicted on Up/Down graph.

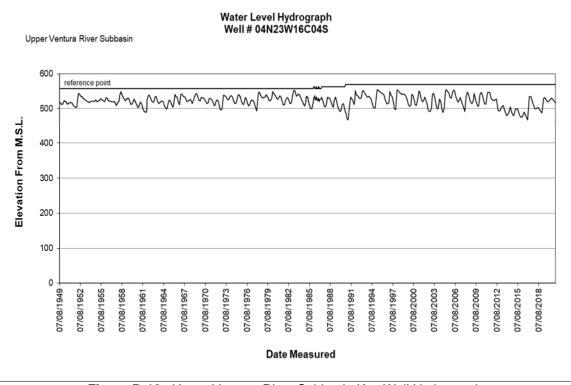


Figure B-18: Upper Ventura River Subbasin Key Well Hydrograph.

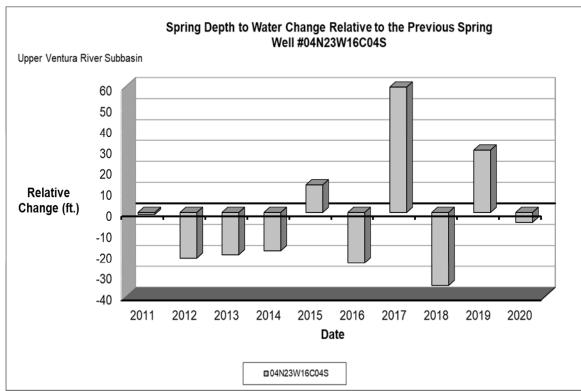
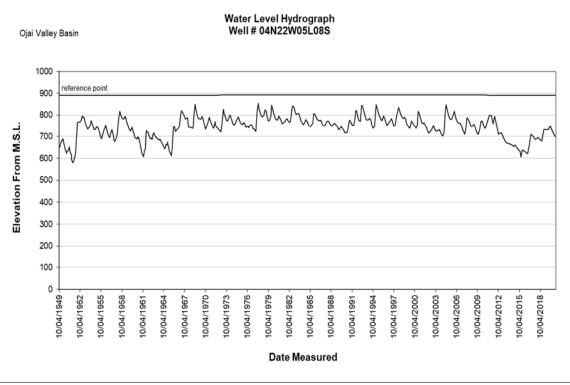
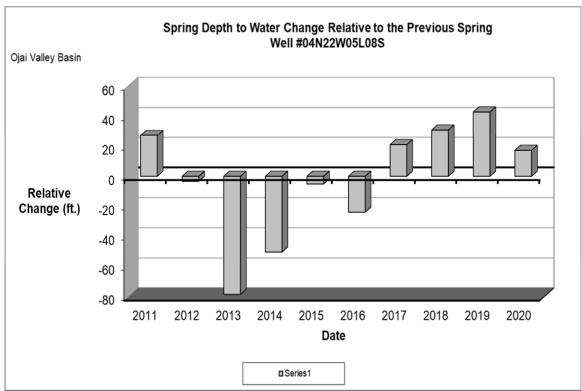
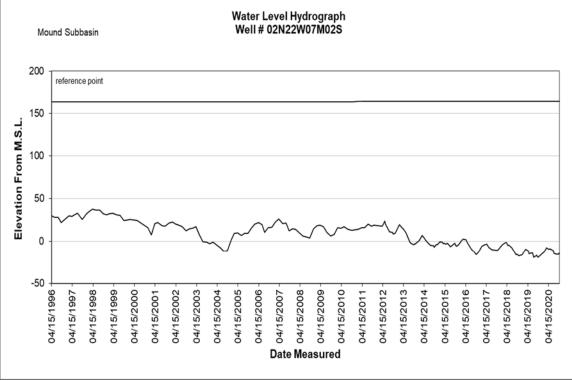
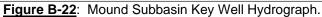


Figure B-19: Upper Ventura River Subbasin 10 year spring level change depicted on Up/Down graph.

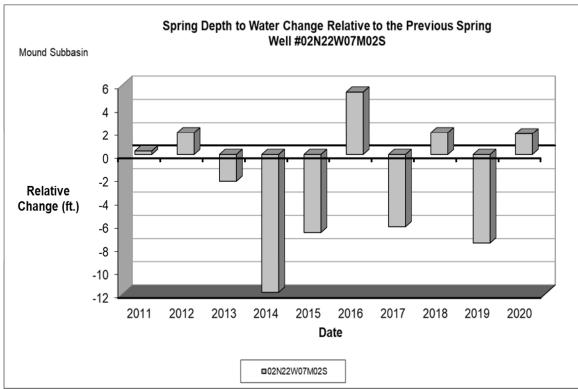

Figure B-20: Ojai Valley Basin Key Well Hydrograph.

Figure B-21: Ojai Valley Basin 10 year spring level change depicted on Up/Down graph.

Figure B-23: Mound Subbasin 10 year spring level change depicted on Up/Down graph.

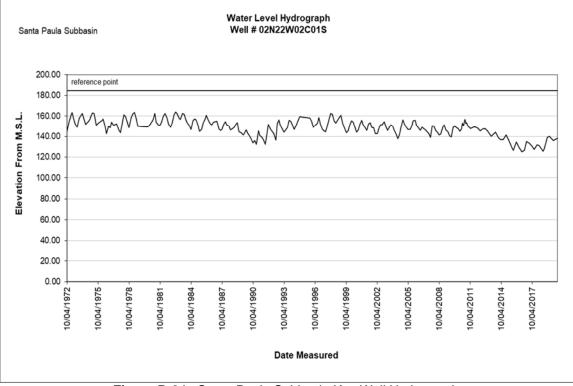


Figure B-24: Santa Paula Subbasin Key Well Hydrograph.

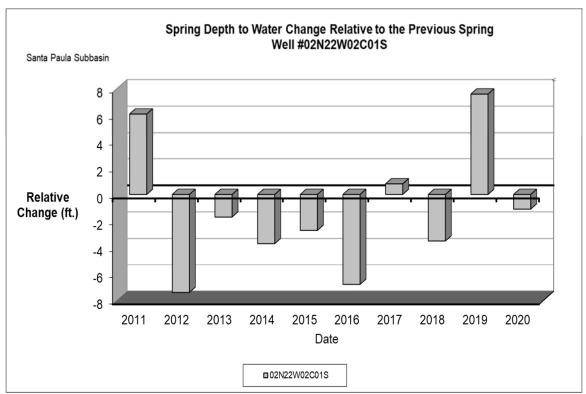


Figure B-25: Santa Paula Subbasin 10 year spring level change depicted on Up/Down graph.

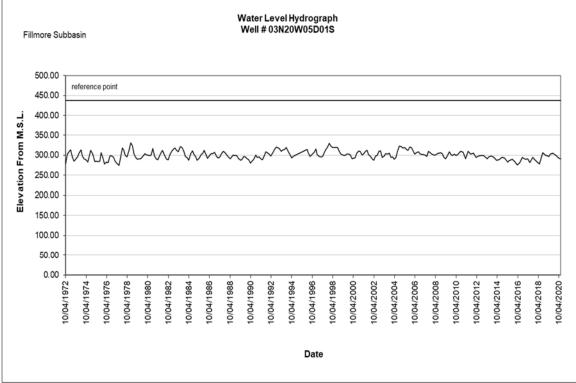
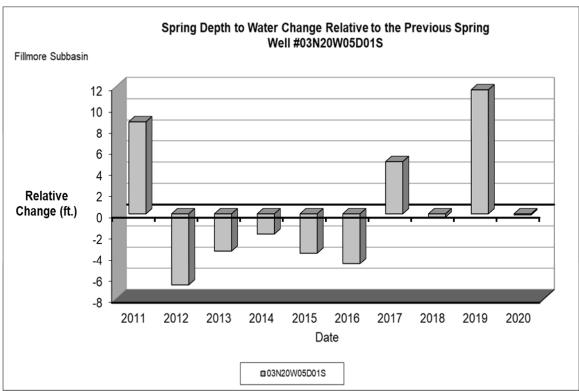



Figure B-26: Fillmore Subbasin Key Well Hydrograph.

Figure B-27: Fillmore Subbasin 10 year spring level change depicted on Up/Down graph.

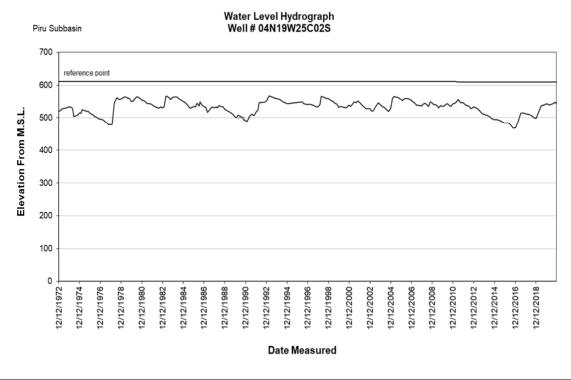
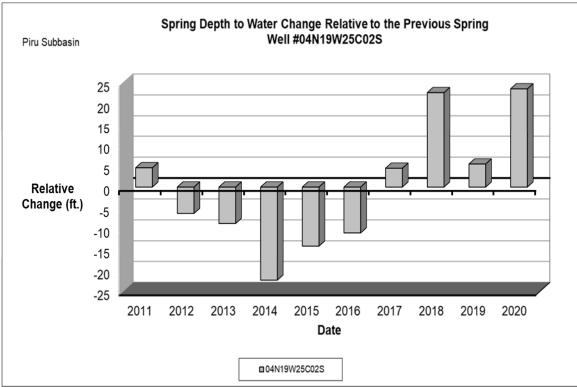



Figure B-28: Piru Subbasin Key Well Hydrograph.

Figure B-29: Piru Subbasin 10 year spring level change depicted on Up/Down graph.

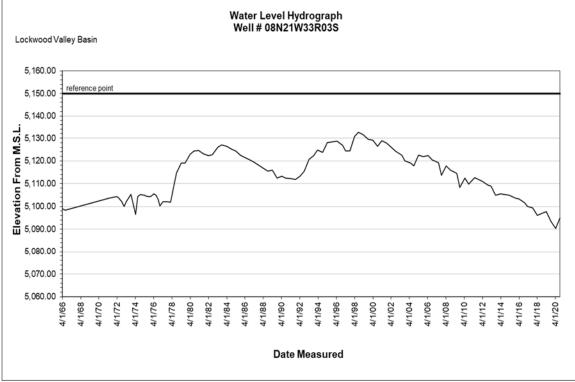
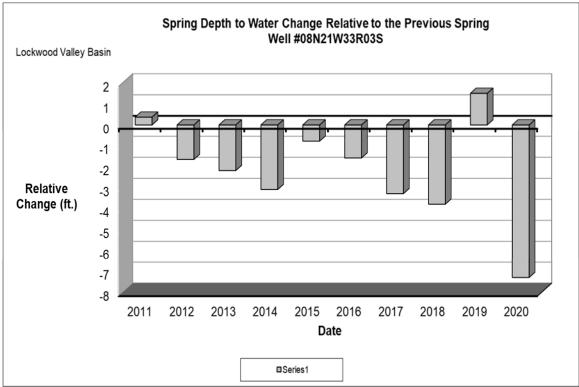
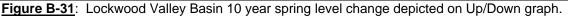




Figure B-30: Lockwood Valley Basin Key Well Hydrograph.

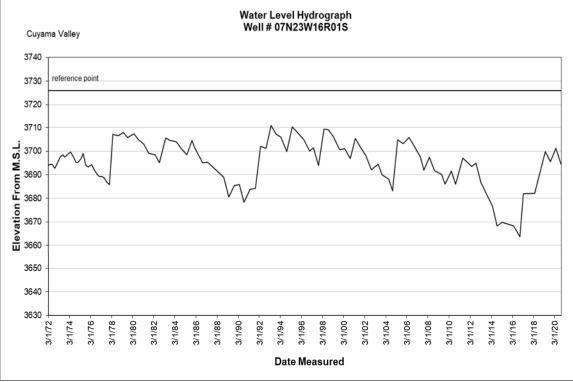


Figure B-32: Cuyama Valley Basin Key Well Hydrograph.

Figure B-33: Cuyama Valley Basin 10 year spring level change depicted on Up/Down graph.

Appendix C -	Groundwater	Level	Measurement	Data
--------------	-------------	-------	-------------	------

Appendix C – Grou				Devil		
GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
	02N19W20L01S	3/31/2020	307.66	115.26	192.40	
		6/19/2020	307.66	110.60	197.06	
		10/9/2020	307.66	113.00	194.66	
		12/1/2020	307.66	117.60	190.06	
_		3/31/2020	370.80	293.20	77.60	
	02N20W23G01S	6/19/2020	370.80	287.90	82.90	
		10/9/2020	370.80	299.00	71.80	
		12/1/2020	370.80	299.81	70.99	
		3/31/2020	274.11	202.20	71.91	
Arrovo Santa Rosa Vallev	02N20W23K01S	6/19/2020	274.11	209.50	64.61	
Arroyo Santa Rosa Valley		10/9/2020	274.11	227.10	47.01	
		12/1/2020	274.11	210.42	63.69	
		3/31/2020	235.21	82.50	152.71	
	02N20W23R01S	6/19/2020	235.21			Pumping
		10/9/2020	235.21			Pumping
		12/1/2020	235.21			Pumping
		3/31/2020	205.87	52.70	153.17	
	02N20W26B03S	6/19/2020	205.87	50.95	154.92	
		10/9/2020	205.87	54.47	151.40	
		12/1/2020	205.87	51.67	154.20	
Conejo	01N19W07K16S	3/5/2020	635.46	6.70	628.76	
		6/8/2020	635.46	6.30	629.16	
		9/23/2020	635.46	9.20	626.26	
		12/29/2020	635.46	10.20	625.26	
		3/5/2020	764.40	41.40	723.00	
		6/8/2020	764.40	38.60	725.80	
	01N20W03J01S	9/23/2020	764.40			Tape Hung Up
		12/29/2020	764.40	41.20	723.20	
	-	4/24/2020	5,300.00	25.90	5,274.10	
Cuddy Ranch Area	08N20W08B01S	10/6/2020	5,300.00	6.90	5,293.10	
		4/24/2020	3,726.00	24.70	3,701.30	
	07N23W16R01S*	10/6/2020	3,726.00	31.50	3,694.50	
		4/24/2020	3,726.00			Pumping
	07N23W16R02S	10/6/2020	3,726.00	27.50	3,698.50	
		4/24/2020	3,435.00	22.60	3,412.40	
Cuyama Valley	07N24W13C03S	10/6/2020	3,435.00	29.00	3,406.00	
		4/24/2020	3,544.50	196.30	3,348.20	
	09N23W30E05S	10/6/2020	3,544.50			Pumping
		4/24/2020	3,130.00	163.40	2,966.60	·
	09N24W33J03S	10/6/2020	3,130.00	167.10	2,962.90	
		3/6/2020	434.60	50.20	384.40	
		6/22/2020	434.60	50.05	384.55	
	03N19W06D02S	10/14/2020	434.60			Pumping
		12/1/2020	434.60			Pumping
Fillmore		3/6/2020	404.58	27.70	376.88	
		6/22/2020	404.58	30.07	374.51	
	03N20W01C04S	10/14/2020	404.58	30.35	374.31	
* - Donotos basin koy wa	<u> </u>	12/1/2020	404.58	30.30	374.28	

Appendix C	– Groundwater	Level	Measurement Data
------------	---------------	-------	-------------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
GVV DASIII/SUDDASIII	30010	3/6/2020	437.12	131.90	305.22	INIVIC
		6/22/2020	437.12	138.05	299.07	
	03N20W05D01S*					
		10/14/2020	437.12	145.65	291.47	
		12/1/2020	437.12	146.75	290.37	Dunging
		3/9/2020	325.20			Pumping
	03N20W09D01S	6/22/2020	325.20			Pumping
		10/14/2020	325.20	8.75	316.45	
		12/1/2020	325.20			Pumping
		3/6/2020	397.11	44.20	352.91	
	03N20W11C01S	6/22/2020	397.11	45.50	351.61	
		10/14/2020	397.11	45.83	351.28	
		12/1/2020	397.11	45.75	351.36	
		3/6/2020	301.85	44.90	256.95	
	03N21W01P02S	6/22/2020	301.85	41.83	260.02	
		10/14/2020	301.85	47.85	254.00	
		12/1/2020	301.85	47.92	253.93	
		3/6/2020	434.43	43.10	391.33	
	04N19W30D01S	6/22/2020	434.43			Pumping
		10/14/2020	434.43			Pumping
		12/1/2020	434.43			Pumping
	04N19W31R01S	3/6/2020	448.85	0.00	448.85	
		6/22/2020	448.85	47.42	401.43	
		10/14/2020	448.85	49.05	399.80	
Fillmore		12/1/2020	448.85			Pumping
		3/6/2020	449.46			Site Inaccessible
	04N19W32M02S	6/22/2020	449.46			Pumping
	0 INTOTIOLINOLO	10/14/2020	449.46	15.48	433.98	
		12/1/2020	449.46	16.75	432.71	
		3/9/2020	477.43			Pumping
	04N19W33D03S	6/22/2020	477.43			Pumping
	0410100000000	10/14/2020	477.43	3.50	473.93	
		12/1/2020	477.43	3.50	473.93	
		3/9/2020	477.90			Flowing
	04N19W33D04S	6/22/2020	477.90			Flowing
		10/14/2020	477.90	7.00	470.90	
		12/1/2020	477.90	3.10	474.80	
		3/6/2020	513.88	128.60	385.28	
	04100000000	6/22/2020	513.88	130.90	382.98	
	04N20W23Q02S	10/14/2020	513.88	134.57	379.31	
		12/1/2020	513.88	132.00	381.88	
		3/6/2020	505.35	130.30	375.05	
	0410004/000000	6/22/2020	505.35	131.40	373.95	
	04N20W26C02S	10/14/2020	505.35	142.97	362.38	
		12/1/2020	505.35	140.08	365.27	
		3/6/2020	526.87			No Site Access
		6/22/2020	526.87			No Site Access
	04N20W33C03S	10/14/2020	526.87			No Site Access
		12/1/2020	526.87			No Site Access

Appendix C -	Groundwater Leve	el Measurement Data
--------------	------------------	---------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/5/2020	1,082.00	288.30	793.70	
	01N19W19L02S	6/8/2020	1,082.00	281.40	800.60	
		9/21/2020	1,082.00			Pumping
	-	12/29/2020	1,082.00			Pumping
Hidden Valley		3/5/2020	999.98	39.10	960.88	
	01N19W30A01S	6/8/2020	999.98	36.60	963.38	
		9/21/2020	999.98	43.10	956.88	
		12/29/2020	999.98	44.40	955.58	
		4/17/2020	497.80	30.70	467.10	
		6/15/2020	497.80	30.40	467.40	
	02N19W05K01S*	10/5/2020	497.80	31.10	466.70	
	-	12/4/2020	497.80	0.00	497.80	
		4/2/2020	494.87	25.10	469.77	
	-	6/15/2020	494.87	27.70	467.17	
	02N19W08H02S	10/15/2020	494.87			
	-	12/4/2020	494.87			No Site Access
		4/3/2020	459.53	309.10	150.43	
		6/9/2020	459.53	313.20	146.33	
	02N20W10D02S	10/2/2020	459.53	325.70	133.83	
		12/4/2020	459.53	318.10	141.43	
		4/3/2020	415.47	155.20	260.27	
		6/9/2020	415.47	162.20	253.27	
	02N20W10G01S	10/15/2020	415.47	171.33	244.14	
		12/4/2020	415.47			Pumping
		4/3/2020	406.87	119.80	287.07	
		6/9/2020	406.87	122.50	284.37	
	02N20W10J01S	10/15/2020	406.87	127.15	279.72	
Las Posas Valley – East		12/4/2020	406.87	127.65	279.22	
Management Area		4/2/2020	1,311.06			No Site Access
		6/15/2020	1,311.06			No Site Access
	03N19W17Q01S	10/15/2020	1,311.06			No Site Access
		12/4/2020	1,311.06			No Site Access
		4/2/2020	1,026.90	845.70	181.20	
		6/10/2020	1,026.90	845.40	181.50	
	03N19W19J01S	10/15/2020	1,026.90	856.60	170.30	
		12/4/2020	1,026.90	859.60	167.30	
		4/2/2020	855.20	249.00	606.20	
		6/11/2020	855.20			Pumping
	03N19W29F06S	10/15/2020	855.20	318.00	537.20	
	-	12/4/2020	855.20	298.61	556.59	
		4/2/2020	970.30	768.50	201.80	
		6/10/2020	970.30	767.80	202.50	
	03N20W23L01S	10/15/2020	970.30	795.80	174.50	
		12/4/2020	970.30			Meter Would Not Stabilize
		4/2/2020	823.84			No Site Access
		6/10/2020	823.84			No Site Access
	03N20W25H01S	10/15/2020	823.84	220.20	603.64	
		12/4/2020	823.84	221.30	602.54	

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
	02N20W/26D02S*	4/2/2020	717.81			Well Work
		6/10/2020	717.81	568.70	149.11	
	03N20W26R03S*	10/15/2020	717.81	580.80	137.01	
		12/4/2020	717.81	575.70	142.11	
		4/2/2020	840.25	644.10	196.15	
	02010201020	6/9/2020	840.25	648.70	191.55	
	03N20W27H03S	10/15/2020	840.25			Pumping
		12/3/2020	840.25			Pumping
		4/3/2020	680.48	526.70	153.78	
	03N20W34G01S	6/9/2020	680.48			Pumping
	03112011346013	10/15/2020	680.48	543.50	136.98	
Las Posas Valley – East		12/3/2020	680.48	541.20	139.28	
Management Area		4/13/2020	572.67			No site access
Management Alea	02N20W25D020	6/10/2020	572.67	419.50	153.17	
	03N20W35R02S	10/27/2020	572.67	426.50	146.17	
		12/3/2020	572.67	426.90	145.77	
	03N20W35R03S	4/13/2020	572.67			No site access
		6/10/2020	572.67	419.10	153.57	
		10/27/2020	572.67	426.00	146.67	
		12/3/2020	572.67	427.14	145.53	
	03N20W35R04S	4/13/2020	572.67			No site access
		6/10/2020	572.67	309.70	262.97	
		10/27/2020	572.67	309.60	263.07	
		12/3/2020	572.67	310.01	262.66	
		4/2/2020	569.00	712.50	-143.50	
	000000050040	6/9/2020	569.00	717.10	-148.10	
	02N20W05D01S	10/15/2020	569.00	718.70	-149.70	
		12/4/2020	569.00			Meter Would Not Stabilize
		4/13/2020	461.19	611.10	-149.91	
		6/9/2020	461.19			Meter Would Not Stabilize
	02N20W06R01S	10/15/2020	461.19			Pumping
		12/3/2020	461.19			Pumping
		3/30/2020	395.00	547.20	-152.20	
Las Posas Valley – West	02020202020	6/11/2020	395.00			Pumping
Management Area	02N20W07R03S	10/5/2020	395.00	563.40	-168.40	
		12/4/2020	395.00			Pumping
		4/3/2020	375.60			No site access
	00010010404040	6/11/2020	375.60			No site access
	02N20W18A01S	10/21/2020	375.60	537.50	-161.90	
		12/3/2020	375.60			No site access
		4/3/2020	334.21			No site access
	000000000000	6/15/2020	334.21	390.20	-55.99	
	02N21W08H03S	10/19/2020	334.21			No site access
		12/9/2020	334.21			No site access

Appendix C – Groundwater Level Measurement Data

Appendix C – Groui		_				
GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
	02N21W09D02S	4/4/2020	323.75	268.50	55.25	
		6/16/2020	323.75	254.10	69.65	
		10/4/2020	323.75	252.20	71.55	
		12/9/2020	323.75	251.98	71.77	
		3/30/2020	381.01	414.00	-32.99	
	02N21W10G03S	6/10/2020	381.01			Pumping
		10/15/2020	381.01			Pumping
		12/3/2020	381.01	441.20	-60.19	
		4/3/2020	379.39	437.50	-58.11	
	02N21W11J03S*	6/9/2020	379.39	443.50	-64.11	
	02112110113033	10/15/2020	379.39	459.40	-80.01	
		12/3/2020	379.39	453.80	-74.41	
		4/3/2020	379.39	410.20	-30.81	
	02N21W11J04S	6/9/2020	379.39	411.70	-32.31	
	02102100113043	10/15/2020	379.39	418.90	-39.51	
		12/3/2020	379.39	419.20	-39.81	
	02N21W11J05S	4/3/2020	379.39	216.00	163.39	
		6/9/2020	379.39	216.20	163.19	
		10/15/2020	379.39	222.90	156.49	
		12/3/2020	379.39	223.40	155.99	
	02N21W11J06S	4/3/2020	379.39	184.60	194.79	
Las Posas Valley – West		6/9/2020	379.39	183.10	196.29	
Management Area		10/15/2020	379.39	185.60	193.79	
		12/3/2020	379.39	186.30	193.09	
		4/2/2020	417.89	453.30	-35.41	
	02N1241/4211046	6/9/2020	417.89	456.50	-38.61	
	02N21W12H01S	10/15/2020	417.89	459.60	-41.71	
		12/3/2020	417.89	461.30	-43.41	
		3/30/2020	440.00	589.20	-149.20	
	0010414/404040	6/11/2020	440.00	593.90	-153.90	
	02N21W13A01S	10/21/2020	440.00	602.60	-162.60	
		12/4/2020	440.00	599.87	-159.87	
		3/30/2020	263.87	330.90	-67.03	
	000000000	6/10/2020	263.87	326.60	-62.73	
	02N21W15M03S	10/19/2020	263.87	326.90	-63.03	
		12/3/2020	263.87	337.50	-73.63	
		3/30/2020	259.90	16.90	243.00	
	0010411401040	6/10/2020	259.90	17.00	242.90	
	02N21W16J01S	9/30/2020	259.90	17.50	242.40	
		12/3/2020	259.90	17.87	242.03	
		4/1/2020	118.41	104.00	14.41	
	0010414/001000	6/29/2020	118.41	101.20	17.21	
	02N21W18H03S	10/19/2020	118.41	105.20	13.21	
		12/4/2020	118.41	105.20	13.21	
B () ()			1	-	l	

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
	00010	4/1/2020	117.88	148.20	-30.32	
	02N21W18H12S	6/29/2020	117.88	146.90	-29.02	
		10/19/2020	117.88	154.95	-37.07	
		12/4/2020	117.88	167.00	-49.12	
Las Posas Valley – West Management Area		4/2/2020	673.00		-43.12	No site access
		6/9/2020	673.00			No site access
	03N20W32H03S	10/15/2020	673.00	824.00	-151.00	NU Sile access
		12/4/2020	673.00	822.50	-149.50	
		3/30/2020	564.11	022.00	-149.50	Pumping
		6/15/2020	564.11	508.70	55.41	1 diriping
	03N21W35P02S	10/22/2020	564.11	523.40	40.71	
		12/3/2020	564.11	523.40	40.71	
		4/24/2020	5,150.00	59.60	5,090.40	
	08N21W33R03S*	10/6/2020		55.20	5,090.40	
Lockwood Valley		4/24/2020	5,150.00	36.60	4,885.40	
	08N21W36G02S 02N22W09L03S		4,922.00			
		10/6/2020	4,922.00	24.50	4,897.50	No site sesses
	02N22W09L03S	3/27/2020	251.25			No site access
		6/22/2020	251.25			No site access
		10/12/2020	251.25			No site access
		12/1/2020	251.25			No site access
		3/27/2020	251.25			No site access
		6/22/2020	251.25			No site access
		10/12/2020	251.25			No site access
Mound		12/1/2020	251.25			No site access
		3/27/2020	149.37	161.60	-12.23	
	02N22W16K01S	6/22/2020	149.37	161.02	-11.65	
		10/12/2020	149.37	164.60	-15.23	
		12/1/2020	149.37	166.31	-16.94	
		3/27/2020	68.71			Pumping
	02N23W13K03S	6/23/2020	68.71	78.20	-9.49	
		10/12/2020	68.71			Pumping
		12/1/2020	68.71			Pumping
		3/4/2020	1,045.50	90.10	955.40	
	04N22W04Q01S	6/4/2020	1,045.50			Pumping
		9/23/2020	1,045.50	96.50	949.00	
		12/18/2020	1,045.50	99.70	945.80	
		3/3/2020	895.97	154.90	741.07	
	04N22W05D03S	6/3/2020	895.97	141.10	754.87	
	04112200050055	9/18/2020	895.97	164.15	731.82	
Ojai Valley		12/18/2020	895.97	171.60	724.37	
Ojal Valley		3/3/2020	950.22			Pumping
		6/4/2020	950.22	182.30	767.92	
	04N22W05H04S	9/24/2020	950.22	200.78	749.44	
		12/18/2020	950.22	196.16	754.06	
		3/3/2020	892.09	142.90	749.19	
		6/3/2020	892.09			Pumping
	04N22W05L08S*	9/18/2020	892.09	182.10	709.99	
		12/18/2020	892.09	191.60	700.49	

Appendix C -	Groundwater L	_evel Measurement	bata
--------------	---------------	-------------------	------

Appendix C – Grou	ſ			Denth	F 1.	
GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/2/2020	843.47	100.80	742.67	
	04N22W05M01S	6/3/2020	843.47	94.80	748.67	
		9/18/2020	843.47	111.00	732.47	
		12/17/2020	843.47	121.40	722.07	
		3/3/2020	846.66	87.10	759.56	
	04N22W06D01S	6/2/2020	846.66	72.80	773.86	
		9/16/2020	846.66	80.00	766.66	
		12/17/2020	846.66	85.10	761.56	
	-	3/3/2020	853.21 853.21	97.30	755.91	Duranian
	04N22W06D05S	6/3/2020 9/16/2020	853.21			Pumping Pumping
		12/17/2020	853.21	112.20	741.01	, amping
		3/5/2020	801.80	105.60	696.20	
	0.4110014/0014000	6/4/2020	801.80	83.90	717.90	
	04N22W06K03S	10/1/2020	801.80	108.60	693.20	
		12/18/2020	801.80	111.80	690.00	
		3/3/2020	812.70	118.00	694.70	
	0.4110014/0.014/0.0	6/4/2020	812.70	116.60	696.10	
	04N22W06K12S	9/18/2020	812.70	118.00	694.70	
		12/18/2020	812.70	122.40	690.30	
		3/2/2020	794.78	58.70	736.08	
		6/2/2020	794.78	49.10	745.68	
04N	04N22W06M01S	9/16/2020	794.78	61.80	732.98	
		12/17/2020	794.78	71.00	723.78	
		3/2/2020	773.77	64.40	709.37	
0:-:)/-!!	0410014/070000	6/2/2020	773.77	64.80	708.97	
Ojai Valley	04N22W07B02S	9/16/2020	773.77	70.10	703.67	
		12/17/2020	773.77	77.90	695.87	
		3/2/2020	771.20	29.60	741.60	
	0410010070040	6/2/2020	771.20	22.50	748.70	
	04N22W07G01S	9/16/2020	771.20			Tape hangs up
		12/17/2020	771.20	37.80	733.40	
		3/4/2020	870.57	123.00	747.57	
	04N00N00R002	6/4/2020	870.57	105.00	765.57	
	04N22W08B02S	9/23/2020	870.57	29.50	841.07	
		12/17/2020	870.57	77.10	793.47	
		3/2/2020	786.38	37.60	748.78	
	04N02W04K02C	6/2/2020	786.38	37.40	748.98	
	04N23W01K02S	9/16/2020	786.38	42.60	743.78	
		12/17/2020	786.38	45.40	740.98	
		3/2/2020	869.49	1.50	867.99	
	04N23W02K01S	6/2/2020	869.49	4.00	865.49	
	0414207021(010	9/19/2020	869.49	72.10	797.39	
		12/17/2020	869.49	76.70	792.79	
		3/4/2020	716.61	32.00	684.61	
	04N23W12H02S	6/3/2020	716.61	22.50	694.11	
	0 11 20 10 20	9/16/2020	716.61	34.00	682.61	
		12/17/2020	716.61	31.30	685.31	
		3/2/2020	1,139.80	55.60	1,084.20	
	05N22W32J02S	6/4/2020 9/18/2020	1,139.80 1,139.80	54.40 57.60	1,085.40 1,082.20	
		12/18/2020	1,139.80	59.70	1,080.10	
- Denotes basin key wa	المنبيا منبقا سما					

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
	0010410/072040	4/3/2020	138.78			Pumping
		6/15/2020	138.78	169.90	-31.12	
	02N21W07P04S	10/19/2020	138.78			Pumping
Oxnard – Forebay		12/4/2020	138.78			No casing access
Management Area		3/27/2020	86.96			No site access
		6/22/2020	86.96			No site access
	02N22W26E01S	10/12/2020	86.96			No site access
		12/1/2020	86.96			No site access
		3/26/2020	43.33	110.00	-66.67	
	011121100411025	6/24/2020	43.33	122.05	-78.72	
	01N21W04N02S	10/13/2020	43.33	130.70	-87.37	
		12/3/2020	43.33	136.05	-92.72	
		3/26/2020	47.85	58.40	-10.55	
		6/23/2020	47.85	58.65	-10.80	
	01N21W06L04S	10/12/2020	47.85	60.90	-13.05	
		12/3/2020	47.85	59.29	-11.44	
	01N21W07H01S*	3/26/2020	40.87	46.40	-5.53	
		6/23/2020	40.87	48.05	-7.18	
		10/12/2020	40.87	51.50	-10.63	
		12/3/2020	40.87	50.15	-9.28	
		3/26/2020	31.50	93.40	-61.90	
		6/23/2020	31.50	105.75	-74.25	
	01N21W08N03S	10/12/2020	31.50	115.85	-84.35	
		12/3/2020	31.50	122.07	-90.57	
Oxnard		3/26/2020	39.96	101.95	-61.99	
		6/24/2020	39.96	113.95	-73.99	
	01N21W09C04S	10/13/2020	39.96	100.33	-60.37	
		12/3/2020	39.96	109.30	-69.34	
		3/26/2020	25.69	80.33	-54.64	
		6/24/2020	25.69	95.35	-69.66	
	01N21W16A04S	10/13/2020	25.69	110.49	-84.80	
		12/3/2020	25.69	117.52	-91.83	
		3/26/2020	22.79	92.60	-69.81	
		6/23/2020	22.79	101.83	-79.04	
	01N21W16M01S	10/12/2020	22.79	116.10	-93.31	
		12/2/2020	22.79	118.45	-95.66	
		3/26/2020	19.39	89.17	-69.78	
		6/23/2020	19.39	103.95	-84.56	
	01N21W16P03S	10/12/2020	19.39	118.75	-99.36	
		12/2/2020	19.39	118.70	-99.31	

Appendix C	- Groundwater	Level	Measurement	Data
------------	---------------	-------	-------------	------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/26/2020	28.21	35.42	-7.21	
	01N21W17D02S	6/23/2020	28.21	37.73	-9.52	
	01112100170023	10/12/2020	28.21	43.10	-14.89	
		12/3/2020	28.21	39.20	-10.99	
		3/26/2020	15.74			No site access
	01N21W21N01S	6/23/2020	15.74	72.00	-56.26	
	01N21W21N01S	10/12/2020	15.74	82.35	-66.61	
		12/2/2020	15.74	82.00	-66.26	
		3/26/2020	14.75	72.85	-58.10	
	01N21W28D01S -	6/23/2020	14.75	86.30	-71.55	
		10/13/2020	14.75	96.67	-81.92	
		11/30/2020	14.75	94.00	-79.25	
		3/26/2020	18.19	25.49	-7.30	
	01N21W29B03S	6/23/2020	18.19			Pumping
	01112100290033	10/12/2020	18.19	40.60	-22.41	
		12/2/2020	18.19			Pumping
		3/16/2020	10.00	67.40	-57.40	
	01N21W32K01S*	6/15/2020	10.00	77.50	-67.50	
		10/18/2020	10.00	83.50	-73.50	
		12/14/20	10.00	89.10	-79.10	
	01N22W12N03S	3/27/2020	38.46			No measure port
Oxnard		6/23/2020	38.46			No measure port
Oxilaiu		10/12/2020	38.46			No measure port
		12/2/2020	38.46			No measure port
		3/26/2020	34.00	83.50	-49.50	
	011001010010	6/23/2020	34.00	88.25	-54.25	
	01N22W12R01S	10/12/2020	34.00	92.50	-58.50	
		12/3/2020	34.00	91.80	-57.80	
		3/27/2020	33.97			Tape hangs up
	01N22W14K01S	6/23/2020	33.97			Tape hangs up
	011N22VV14K015	10/12/2020	33.97			Tape hangs up
		12/1/2020	33.97			Tape hangs up
		3/27/2020	15.28	36.80	-21.52	
	0110000010020	6/23/2020	15.28	37.35	-22.07	
	01N22W21B03S	10/12/2020	15.28	40.42	-25.14	
		12/2/2020	15.28	42.80	-27.52	
		3/27/2020	29.10	35.75	-6.65	
	04N00W040000	6/23/2020	29.10	38.50	-9.40	
	01N22W24C02S	10/12/2020	29.10	41.50	-12.40	
		12/1/2020	29.10	42.24	-13.14	
		3/27/2020	13.06	56.80	-43.74	
	0410000000000	6/23/2020	13.06	69.75	-56.69	
	01N22W26K03S	10/12/2020	13.06			Pumping
		12/2/2020	13.06			Pumping

Appendix C -	Groundwater	Level	Measurement	Data
--------------	-------------	-------	-------------	------

	ndwater Level	Measurenn				
GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/27/2020	13.00	53.40	-40.40	
	01N22W26M03S	6/23/2020	13.00			Pumping
		10/12/2020	13.00			Pumping
		12/2/2020	13.00	73.45	-60.45	
		3/27/2020	11.50	54.20	-42.70	
	01N22W36B02S	6/23/2020	11.50			Pumping
		10/12/2020	11.50			Pumping
		12/2/2020	11.50			Pumping
		4/3/2020	102.70	123.90	-21.20	
	0010414/404020	6/9/2020	102.70	134.10	-31.40	
	02N21W19A03S	10/19/2020	102.70	135.80	-33.10	
		12/3/2020	102.70	140.85	-38.15	
		4/1/2020	101.80	98.10	3.70	
		6/24/2020	101.80	98.40	3.40	
	02N21W19B02S	10/13/2020	101.80	105.70	-3.90	
		12/7/2020	101.80	119.90	-18.10	
		4/3/2020	113.36			No site access
		6/9/2020	113.36			No site access
	02N21W20F02S	10/19/2020	113.36			No site access
		12/7/2020	113.36	181.07	-67.71	
		3/27/2020	92.09	151.90	-59.81	
	02N21W20M06S	6/24/2020	92.09	160.30	-68.21	
		10/13/2020	92.09			Pumping
		12/3/2020	92.09			Pumping
Oxnard		3/26/2020	57.75	65.20	-7.45	
		6/23/2020	57.75	64.35	-6.60	
	02N21W31P02S	10/12/2020	57.75	65.10	-7.35	
		12/3/2020	57.75	64.07	-6.32	
		3/26/2020	55.17	111.30	-56.13	
		6/23/2020	55.17	114.25	-59.08	
	02N21W31P03S	10/12/2020	55.17	122.67	-67.50	
		12/3/2020	55.17	125.50	-70.33	
		3/31/2020	94.30	99.55	-5.25	
		6/24/2020	94.30		-0.20	Pumping
	02N22W24P01S	10/13/2020	94.30			Pumping
		12/7/2020	94.30	103.19	-8.89	Fumping
		3/27/2020	42.38	54.50	-12.12	
	02N22W30K01S	6/23/2020	42.38	55.10	-12.72	
		10/12/2020	42.38	58.75	-16.37	
		12/2/2020	42.38	57.45	-15.07	
		3/27/2020	42.30	51.70	-9.40	
	02N22W31A01S	6/23/2020	42.30	52.48	-10.18	
		10/12/2020	42.30	55.20	-12.90	
		12/2/2020	42.30	54.20	-11.90	
		3/27/2020	40.10	52.20	-12.10	
	02N22W32Q03S	6/23/2020	40.10			No site access
		10/12/2020	40.10			No site access
Denotes basin key water	l <u> </u>	12/2/2020	40.10			Pumping

Appendix C	– Groundwater Leve	el Measurement Data
------------	--------------------	---------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/27/2020	27.73	54.90	-27.17	
		6/23/2020	27.73	54.57	-26.84	
Oxnard	02N23W36C04S	10/12/2020	27.73	54.27	-26.54	
		12/2/2020	27.73	54.10	-26.37	
		3/9/2020	655.63	101.70	553.93	
		6/22/2020	655.63	88.70	566.93	
	04N18W19R01S	10/14/2020	655.63	87.20	568.43	
		12/1/2020	655.63	91.95	563.68	
		3/9/2020	623.30	54.70	568.60	
	0.414.014/00.1050	6/22/2020	623.30	50.70	572.60	Pumping
	04N18W30J05S	10/14/2020	623.30	46.00	577.30	
		12/1/2020	623.30	51.85	571.45	
		3/9/2020	611.09	71.00	540.09	
	0.414.014/050000*	6/22/2020	611.09	68.60	542.49	
	04N19W25C02S*	10/14/2020	611.09	63.25	547.84	
		12/1/2020	611.09	67.07	544.02	
		3/9/2020	593.97	47.00	546.97	
5	0414014/051/040	6/22/2020	593.97			Pumping
Piru	04N19W25K04S	10/14/2020	593.97			Pumping
		12/1/2020	593.97			Pumping
	04N19W26P01S	3/9/2020	563.00			Pumping
		6/22/2020	563.00			Pumping
		10/14/2020	563.00			Pumping
		12/1/2020	563.00	33.60	529.40	
		3/9/2020	519.51			No site access
		6/22/2020	519.51			No site access
	04N19W34K01S	10/14/2020	519.51	9.20	510.31	
		12/1/2020	519.51	10.90	508.61	
		3/9/2020	541.08			No site access
		6/22/2020	541.08	17.25	523.83	
	04N19W35L02S	10/14/2020	541.08	9.55	531.53	
		12/1/2020	541.08	15.50	525.58	
		3/26/2020	96.17	163.40	-67.23	
		6/24/2020	96.17			Pumping
	01N21W01M02S	10/13/2020	96.17			Pumping
		12/3/2020	96.17	198.45	-102.28	
		3/26/2020	89.51	89.10	0.41	
		6/24/2020	89.51	91.49	-1.98	
	01N21W02J02S	10/13/2020	89.51	93.60	-4.09	
		12/3/2020	89.51	100.80	-11.29	
Pleasant Valley		3/26/2020	67.98			Capped
		6/24/2020	67.98			Capped
	01N21W02P01S	10/13/2020	67.98			Capped
		12/3/2020	67.98			Capped
	<u> </u>	3/26/2020	72.28	146.50	-74.22	Capped
		6/24/2020	72.28	156.10	-83.82	
	01N21W03C01S*	10/13/2020	72.28	161.00	-88.72	
		12/2/2020			-86.32	
	1	12/2/2020	72.28	158.60	-00.32	

<u> Appendix C</u> – Groui						
GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/26/2020	47.52	108.75	-61.23	
	01N21W04K01S	6/24/2020	47.52	119.17	-71.65	
		10/13/2020	47.52	128.70	-81.18	
		12/3/2020	47.52	140.60	-93.08	
		3/26/2020	30.56			No site access
	011011000 1020	6/24/2020	30.56			No site access
	01N21W09J03S	10/13/2020	30.56			No site access
		12/3/2020	30.56			No site access
		3/26/2020	38.72	99.83	-61.11	
	01N21W10G01S	6/24/2020	38.72	113.60	-74.88	
		10/13/2020	38.72	127.20	-88.48	
		12/3/2020	38.72	142.45	-103.73	
	_	3/26/2020	50.11	20.80	29.31	
		6/24/2020	50.11	21.19	28.92	
	01N21W14A01S	10/13/2020	50.11	22.35	27.76	
		12/3/2020	50.11	26.48	23.63	
Pleasant Valley		3/26/2020	33.17	13.42	19.75	
		6/24/2020	33.17	14.52	18.65	
	01N21W15H01S	10/13/2020	33.17	15.83	17.34	
		12/3/2020	33.17	18.37	14.80	
	02N20W19M05S	3/31/2020	200.47	194.80	5.67	
		6/24/2020	200.47	194.45	6.02	
		10/9/2020	200.47	194.43	10.02	
		12/1/2020	200.47	190.40	5.95	
		3/26/2020	90.60	161.10	-70.50	
	02N21W35M02S	6/24/2020	90.60	169.75	-79.15	
		10/13/2020	90.60	175.85	-85.25	
		12/3/2020	90.60	177.75	-87.15	
		3/26/2020	111.18	95.52	15.66	
	02N21W36N01S	6/24/2020	111.18	109.80	1.38	
		10/13/2020	111.18	117.40	-6.22	
		12/3/2020	111.18	116.35	-5.17	
	02N22W02C01S*	3/6/2020	184.38	46.20	138.18	
		6/22/2020	184.38			Destroyed
		3/9/2020	248.75	127.00	121.75	
	02N22W03K02S	6/22/2020	248.75	126.90	121.85	
	22.122.100.020	10/12/2020	248.75	131.50	117.25	
		12/1/2020	248.75	132.11	116.64	
Santa Paula		3/9/2020	291.50	211.00	80.50	
Gama I dula	02N22W03M02S	6/25/2020	291.50	201.67	89.83	
	0219229903191023	10/12/2020	291.50	201.90	89.60	
		12/1/2020	291.50	202.97	88.53	
		3/6/2020	362.18	167.00	195.18	
	0010411/001/000	6/22/2020	362.18	166.40	195.78	
	03N21W09K02S	10/14/2020	362.18	176.07	186.11	
		12/1/2020	362.18	171.48	190.70	
Depates basis key wate	· · · ·		1	1	1	

Appendix C -	Groundwater	Level	Measurement Data
--------------	-------------	-------	-------------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/6/2020	283.35	101.80	181.55	
	021/24/47/04 8	6/22/2020	283.35			Pumping
	03N21W17Q01S	10/14/2020	283.35			Pumping
		12/1/2020	283.35			Pumping
		3/6/2020	235.39	64.70	170.69	
	021211/100010	6/22/2020	235.39			No site access
	03N21W19R01S	10/14/2020	235.39			Pumping
Conto Doulo		12/1/2020	235.39	80.20	155.19	
Santa Paula		3/6/2020	221.21	67.10	154.11	
	03N21W30F01S	6/22/2020	221.21			Pumping
	03N21W30F015	10/14/2020	221.21			Pumping
		12/1/2020	221.21			Pumping
		3/9/2020	180.89	27.80	153.09	
	00100100000000	6/22/2020	180.89	41.00	139.89	
	03N22W36K05S	10/14/2020	180.89	49.75	131.14	
		12/1/2020	180.89	43.37	137.52	
		3/31/2020	870.00	52.07	817.93	
	0014014040000	6/19/2020	870.00	53.50	816.50	
	02N18W04R02S	10/9/2020	870.00	55.80	814.20	
		12/1/2020	870.00	56.01	813.99	
		3/27/2020	926.40	85.80	840.60	
	0014014404000	6/26/2020	926.40	91.10	835.30	
	02N18W10A02S	9/25/2020	926.40	90.30	836.10	
		10/25/2020	926.40	92.70	833.70	
		3/31/2020	619.29	155.20	464.09	
	0014014405040	6/19/2020	619.29	159.00	460.29	
	02N19W10R01S	10/9/2020	619.29	161.56	457.73	Pumping
		12/1/2020	619.29	162.67	456.62	
		3/31/2020	718.95	101.60	617.35	
Tierre Deiede	02014010/4204020	6/19/2020	718.95	103.30	615.65	Pumping
Tierra Rejada	02N19W12M03S	10/9/2020	718.95			Pumping
		12/1/2020	718.95	101.40	617.55	
		3/31/2020	678.12			No site access
	020100//140019	6/19/2020	678.12			No site access
	02N19W14P01S	10/9/2020	678.12			No site access
		12/1/2020	678.12			No site access

Appendix C -	Groundwater	Level	Measurement Data
--------------	-------------	-------	-------------------------

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
		3/5/2020	945.42			No site access
		6/8/2020	945.42			No site access
	01N19W02L01S	9/23/2020	945.42			No site access
		12/29/2020	945.42			No site access
		3/5/2020	908.79	23.00	885.79	
		6/8/2020	908.79	21.70	887.09	
	01N19W14K04S	9/23/2020	908.79	23.10	885.69	
		12/29/2020	908.79	23.40	885.39	
		3/5/2020	903.53	23.30	880.23	
		6/8/2020	903.53	22.00	881.53	
	01N19W15E01S	9/23/2020	903.53	26.10	877.43	
		12/29/2020	903.53	26.90	876.63	
		3/5/2020	1,126.54			too much rust
	04110014/0411000	6/8/2020	1,126.54			too much rust
	01N20W24H02S	9/23/2020	1,126.54			too much rust
		12/29/2020	1,126.54			too much rust
		3/4/2020	1,325.90	22.30	1,303.60	
UNDEFINED	04N22W10K02S	6/4/2020	1,325.90	19.20	1,306.70	
		9/14/2020	1,325.90	25.40	1,300.50	
		12/16/2020	1,325.90	28.30	1,297.60	
		3/4/2020	554.50			Flowing
	04N12210/14N1048	6/4/2020	554.50			Flowing
	04N23W14M04S	9/29/2020	554.50			Flowing
		12/16/2020	554.50			Flowing
		3/2/2020	619.89	72.60	547.29	
	04N23W16P01S	6/2/2020	619.89	71.90	547.99	
	04112311101010	9/18/2020	619.89	77.50	542.39	
		12/15/2020	619.89	80.10	539.79	
		3/4/2020	402.37	15.20	387.17	
	04N23W28G01S	6/4/2020	402.37	14.50	387.87	
	04112311200013	9/23/2020	402.37	26.10	376.27	
		12/18/2020	402.37	28.90	373.47	
		3/2/2020	331.80	16.40	315.40	
	04N23W33M03S	6/2/2020	331.80	16.50	315.30	
	04142010000	9/14/2020	331.80	19.10	312.70	
		12/17/2020	331.80	23.20	308.60	
		3/2/2020	626.45			No site access
	04N24W13J04S	6/2/2020	626.45			No site access
		9/29/2020	626.45			No site access
		12/15/2020	626.45	10.80	615.65	
		3/2/2020	642.12			No site access
	04N24W13N01S	6/2/2020	642.12			No site access
		9/29/2020	642.12			No site access
		12/15/2020	642.12	2.50	639.62	No site access

Appendix C -	Groundwater	Level	Measurement Data
--------------	-------------	-------	------------------

<u>Appendix C</u> – Grou GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.	NMC
	00010	3/4/2020	1,278.80	20.00	1,258.80	
		6/4/2020	1,278.80	18.70	1,260.10	
	04N22W09Q02S	9/24/2020	1,278.80			No site access
		12/16/2020	1,278.80	23.50	1,255.30	
		3/4/2020	1,420.60	18.90	1,401.70	
		6/4/2020	1,420.60		1,401.70	No site access
Upper Ojai Valley	04N22W11P02S	9/16/2020	1,420.60	23.00	1,397.60	
		12/16/2020	1,420.60	23.00	1,395.80	
		3/4/2020	1,420.00	156.20	1,460.70	
		6/4/2020	1,616.90	129.40	1,487.50	
	04N22W12F04S	9/29/2020	1,616.90	143.90	1,473.00	
		12/16/2020				
			1,616.90	144.90	1,472.00	
		3/4/2020	50.86			No site access
	03N23W32Q03S	6/8/2020	50.86	30.60	20.26	
		9/29/2020	50.86			No site access
Ventura River - Lower		12/16/2020	50.86	37.60	13.26	
		3/4/2020	46.10			No site access
	03N23W32Q07S	6/8/2020	46.10	28.10	18.00	
		9/29/2020	46.10			No site access
		12/16/2020	46.10	37.70	8.40	
		3/2/2020	293.20	47.10	246.10	
	03N23W05B01S	6/2/2020	293.20	44.50	248.70	
		9/14/2020	293.20	46.90	246.30	
		12/15/2020	293.20	47.30	245.90	
		3/2/2020	239.19	15.50	223.69	
	03N23W08B07S	6/2/2020	239.19	15.00	224.19	
	00112011002010	9/14/2020	239.19	16.20	222.99	
		12/15/2020	239.19	14.90	224.29	
		3/3/2020	760.85	101.80	659.05	
	04N23W03M01S	6/3/2020	760.85			No site access
		9/29/2020	760.85			No site access
		12/16/2020	760.85			No site access
		3/3/2020	713.04	66.00	647.04	
Ventura River - Upper	04N23W04J01S	6/3/2020	713.04	61.50	651.54	
	04112377043013	9/4/2020	713.04	67.00	646.04	
		12/16/2020	713.04	10.50	702.54	
		3/3/2020	662.30			Pumping
	04N00D046	6/3/2020	662.30	36.80	625.50	
	04N23W09B01S	9/24/2020	662.30			Pumping
		12/16/2020	662.30	44.40	617.90	
		3/2/2020	680.90	93.10	587.80	
	0.4510014/1510000	6/2/2020	680.90	91.90	589.00	
	04N23W15A02S	9/16/2020	680.90	92.10	588.80	
		12/18/2020	680.90	94.60	586.30	
		3/2/2020	634.30	128.20	506.10	
		6/2/2020	634.30	115.90	518.40	
	04N23W15D02S	9/18/2020	634.30	123.30	511.00	
	1		634.30	130.60	503.70	

GW Basin/Subbasin	SWN	Date	RP	Depth	Elev.
		3/2/2020	569.10	44.00	525.10
	04N23W16C04S	6/2/2020	569.10	37.90	531.20
	04112310160045	9/18/2020	569 10		

Appendix C – Groundwater Level Measurement Data

	04112310100043	9/18/2020	569.10			No site access
		12/15/2020	569.10	52.30	516.80	
		3/2/2020	488.89	13.30	475.59	
	04N23W20A01S	6/2/2020	488.89	10.00	478.89	
	0411231120A013	9/18/2020	488.89	27.50	461.39	
		12/15/2020	488.89	26.40	462.49	
		3/2/2020	396.58	19.60	376.98	
Ventura River - Upper	04N23W29F02S	6/2/2020	396.58	17.20	379.38	
ventura River - Opper	0411231129F023	9/14/2020	396.58	28.20	368.38	
		12/17/2020	396.58	31.90	364.68	
	05N23W33B03S	3/3/2020	829.00	36.80	792.20	
		6/3/2020	829.00	28.40	800.60	
	00112300330033	9/29/2020	829.00			No site access
		12/18/2020	829.00	34.80	794.20	
		3/3/2020	816.21	23.20	793.01	
	05N23W33G01S	6/3/2020	816.21	20.60	795.61	
	03112310336013	9/24/2020	816.21	26.60	789.61	
		12/18/2020	816.21	70.30	745.91	

NMC

Appendix D – Water Quality Section

TABLES

<u>Page</u>

Table D-1:	General Minerals	155
Table D-2:	California Title 22 Metals	162
Table D-3:	Radiochemistry	164

General Minerals Tal	ole D-1		
Mineral	Abbreviation	Reported Units	Laboratory Analytical Method
Boron	В	mg/l	EPA 200.7
Bicarbonate	HCO ₃ ⁻	mg/l	SM23320B
Calcium	Ca	mg/l	EPA 200.7
Copper	Cu	µg/l	EPA 200.7
Carbonate	CO3 ²⁻	mg/l	SM23320B
Chloride	Cl	mg/l	EPA 300.0
Electrical Conductivity	eC	µmhos/cm	SM2510B
Fluoride	F ⁻	mg/l	EPA 300.0
Iron	Fe	µg/l	EPA 200.7
Potassium	К	mg/l	EPA 200.7
Magnesium	Mg	mg/l	EPA 200.7
Manganese	Mn	µg/l	EPA 200.7
Nitrate	NO ₃ ⁻	mg/l	SM4500NO3F
Sodium	Na	mg/l	EPA 200.7
Sulfate	SO4 ²⁻	mg/l	EPA 300.0
Total Dissolved Solids	TDS	mg/l	EPA 200.7
Zinc	Zn	µg/l	EPA 200.7
рН	рН	units	SM4500-H B

TDS ZN	770 ND 7	980 ND 7	790 ND 7	800 ND 7	590 ND 7	980 ND 7	650 ND 7	850 ND 7	990 ND 7	1010 ND 7	660 ND 7	1330 ND 7	1450 40	900 100 6	2030 ND 8
SO4 ²⁻ T	104 7	174 9	117 7	91.9 8	80 5	185 5	78.1 6	166 8	202 5	287 1	244 6	433 1:	446 1.	179 5	1160 2
Na	71	72	73	84	65	113	67	101	119	110	53	97	111	62	93
NO ₃ -	61.8	76.4	23.4	7.77	17.7	78.2	8.4	44.7	57.4	10.5	DN	Q	QN	4	2.4
Mn	30	QN	QN	QN	10	QN	QN	Q	QN	Q	DN	Q	40	DN	DN
Mg	69	84	81	75	54	61	58	71	74	52	43	108	114	96	118
×	-	٢	с	2	٢	-	e	-	٢	2	4	e	с	QN	4
Fe	Q	QN	40	Q	QN	QN	Q	40	QN	Q	DN	30	40	QN	QN
Ĺ.	0.2	0.2	0.3	0.2	0.1	0.3	0.3	0.2	0.3	0.6	0.3	0.2	0.3	0.1	1,1
EC	1180	1480	1280	1280	964	1590	1080	1340	1550	1540	686	1840	2000	1480	2360
Cu	Q	ΩN	ΩN	Q	ΩN	ΩN	Q	QN	ΩN	QN	30	QN	ΩN	10	QN
Ċ	108	116	130	141	88	171	118	140	153	91	28	119	154	159	8
CO3 ²⁻	QN	ΠN	ΠN	QN	ΠN	ΠN	QN	QN	ΠN	QN	ΠN	QN	ΠN	DN	QN
Ca	72	100	78	73	52	77	53	82	95	124	93	109	153	86	309
HCO ₃ -	340	420	370	310	310	320	320	310	350	420	240	370	400	420	220
В	0.2	0.2	0.1	0.2	0.1	0.3	0.1	0.3	0.3	0.3	0.4	0.1	0.2	0.2	0.2
Date	11/12/2020	11/19/2020	11/12/2020	11/12/2020	11/19/2020	10/9/2020	11/19/2020	11/12/2020	12/1/2020	9/1/2020	9/1/2020	12/17/2020	12/17/2020	12/17/2020	12/30/2020
	02N19W19P02S	02N19W/20L01S	02N19W20M04S	02N20W23G03S	02N20W23K01S	02N20W23R01S	02N20W24M02S	02N20W25C02S	02N20W26C02S	04N25W25N06S	04N25W35G01S	01N19W08G02S	01N19W09N01S	01N20W03J01S (Outside Basin)	07N23W15P01S
					Arroyo Santa Kosa	Valiey				Consistencies Of the second	Carpinteria		Coneio		Cuvama Vallev

Coneio	CINENVEINIO	12/11/2020 0.2	0.Z	400	001	ND	104	N	zuuu	0.0	40	°	+ - +	40	ND	_	440	1400	0 1	-
	01N20W03J01S (Outside Basin)	12/17/2020	0.2	420	86	ND	159	10	1480	0.1	ND	ND	96	ND	4	62	179	006	100	6.6
Cuyama Valley	07N23W15P01S	12/30/2020	0.2	220	309	ND	8	ND	2360	1.1	QN	4	118	ND	2.4	. 63	1160	2030	ND	8.1
	03N19W06D02S	8/31/2020	0.5	260	119	ND	66	ND	1450	0.7	ND	5	48	ND	15.4	86	399	1020	ND	7.3
	03N20W01F05S	8/27/2020	0.6	280	142	ΠD	63	QN	1550	0.7	ND	5	54	DN	21.1	93	464	1110	ND	7.5
	03N20W09D01S	8/31/2020	0.8	320	178	ND	78	ND	1850	0.6	ND	9	62	ND	39.4	106	533	1370	ND	7.1
	03N21W01P08S	8/26/2020	0.6	290	151	ΠD	48	QN	1500	0.5	DD	2	41	270	18.5	83	450	1110	ΠD	7.2
	04N19W19N01S	9/3/2020	0.4	330	133	ND	40	ND	1660	0.7	ND	4	54	40	2.7	93	542	1280	ND	7.1
	04N19W31F01S	8/27/2020	0.5	260	136	ND	71	ND	1470	0.7	ND	5	54	ND	16	92	395	1060	ND	7.3
Fillmore	04N19W31R01S	12/1/2020	0.6	320	155	ND	67	ND	1510	0.7	ND	9	56	40	16.8	93	369	1050	ND	7.1
	04N19W32L02S	12/1/2020	0.6	230	123	ND	56	ND	1250	0.8	ND	5	50	50	10.7	78	326	006	ND	7.2
	04N20W26D03S	9/3/2020	0.2	250	130	ND	45	ND	1220	0.5	ND	2	27	ND	42	43	284	850	ND	7.1
	04N20W26F01S	8/26/2020	0.9	270	128	ND	50	ND	1260	0.6	ND	2	30	DN	22.6	65	320	880	ND	7
	04N20W31H04S	9/3/2020	0.1	320	88	ND	19	ND	1000	0.4	ND	2	30	ND	17.5	37	218	690	ND	7.1
	04N20W31P01S	8/26/2020	0.1	400	154	ND	48	ND	1530	0.5	ND	2	49	ND	75.3	59	333	1080	ND	6.9
	04N20W36P04S	8/27/2020	0.6	290	135	DN	60	QN	1560	0.6	DD	5	51	DD	28	06	444	1160	30	7.2
Hidden Valley	01N19W19H03S	12/17/2020	0.1	360	69	ΠN	43	QN	915	0.1	40	3	51	50	QN	56	114	540	150	7.2

7.1 7.6

7.3

 \sim

PH 7.2 7.3 7.3 7.2 7.2 7.2 7.4 7.4 7.1 7.2

	7
*	
-	2
č	נ
2	כ
	_
-	2
0	
ŝ	
Q	ש
2	
Σ	
2	
<u> </u>	0
2	5
2	
2	i N
	K
C	,
~	_
ù	L
	1
	•
-	2
_	2

20 11 ND 128 560 162 01 7 41 10 137 317 136 137 136 137 136 137 136 137 136 137 1317 1317 1317 1317 1317 1317	W Basin/Subbasin	I able D-1 General Minerals (cont.) GW Basin/Subbasin SWN Date	(cont.) Date	В	HCO ₃ -	Ca	CO ₃ ²⁻	C	Cu	ЦС	Ĺ.	Fe	¥	Mg	Mn	NO3-	Na	SO4 ²⁻ 7	TDS	Zn	На
Contributiones) 1002.0200 0.01 200 147 ND 147 ND 147 ND 148 0.6 ND 4 51 20 65 22 461 Contributiones 1027.0200 0.7 20 0.4 ND 51 ND 157 0.0 65 73 0.0 3 0.4 Contributiones 1027.0200 0.7 20 0.4 ND 179 0.2 ND 14 10 0.2 10 0.6 173 0.0 4 Contributiones 1027.0200 0.7 20 0.7 10 10 117 0.0 20 ND 14 10 0.2 10 0.6 17 10 Contributiones 1027.0200 0.7 20 0.7 10 10 117 0.0 20 ND 14 10 0.2 10 0.6 11 Contributiones 1027.0200 0.7 20 10 20 10 10 10 117 0.0 12 ND 14 10 0.2 10 0.6 11 Contributiones 1027.0200 0.1 20 12 0.0 124 ND 149 ND 140 125 0.2 10 10 0.2 10 0.6 11 Contributiones 1027.0200 0.1 20 173 ND 149 ND 120 0.2 ND 14 10 0.2 10 0.6 11 Contributiones 10.2 200 0.1 20 173 ND 149 ND 120 0.2 ND 17 0.6 120 2.0 12 Contributiones 10.0 2000 0.1 20 10 120 ND 140 ND 147 0.0 12 10 0.0 12 Contributiones 10.0 2000 0.1 20 10 20 ND 140 ND 147 0.0 20 0.1 20 0.1 20 0.0 12 Contributiones 10.0 2000 0.1 20 0.1 20 0.0 117 ND 140 0.1 20 0.0 12 10 0.0 12 Contributiones 10.0 2000 0.1 10 0.0 10 10 0.0 10 10 10 10 10 10 10 10 Contributiones 10.0 2000 0.1 10 10 0.0 10 120 0.0 10 12 10 10 Contributiones 10.0 2000 0.1 10 10 0.0 10 12 10 10 12 Contributiones 10.0 2000 0.1 10 10 0.0 10 12 10 10 12 Contributiones 10.0 2000 0.1 10 10 12 Contributiones 10.0 2000 0.1 10 10 12 Contributiones 10.0 200 0.1 10 10 10 Contributiones 10.0 200 0.1 10 10 12 Contributiones 10.0 200 0.1 10 10 Contributiones 10.0 200 0.1 10 10 12 Contributiones 10.0 200 0.1		02N19W06F01S	10/23/2020	0.6	220	118	ND	128	550	1620	0.4	g	2	41	-	-			1080	Ð	7.3
ORNEWONDES 10211/2020 0.7 250 144 ND 150 ND 3 3 17 ND 157 ND 3 3 17 161 <td></td> <td>02N19W07B02S</td> <td>10/8/2020</td> <td>0.8</td> <td>250</td> <td>117</td> <td>ND</td> <td>147</td> <td>QN</td> <td>1880</td> <td>0.6</td> <td>QN</td> <td>4</td> <td>51</td> <td>20</td> <td></td> <td></td> <td></td> <td>1270</td> <td>Q</td> <td>7.3</td>		02N19W07B02S	10/8/2020	0.8	250	117	ND	147	QN	1880	0.6	QN	4	51	20				1270	Q	7.3
Controlmonical regional conditional conditand conditional conditional conditional conditional conditional co		02N19W07D02S	10/21/2020	0.7	250	144	ŊD	150	QN	1780	0.4	QN	з	37		18.7			1140	QN	7.2
Concontronics) 108/20200 07 200 140 ND 141 ND 179 03 ND 3 140 ND 261 162 408 404 100 ND 262 409 404 100 ND 262 409 13 ND 262 142 100 ND 36 147 142 142 142 142 142 142 142 142 142 142		02N20W01B02S	10/30/2020	0.2	100	29	DN	51	DN	530	0.5	QN	в	12		0.6		'3.1	310	QN	7.9
Contronmenticiely (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		02N20W01Q01S	10/8/2020	0.7	280	156	QN	141	QN	1790	0.3	QN	ю	40		28.1			1230	QN	7.2
ORXE0N004E01S1 102/28/2020 ND 10 103 01 02 ND 10 03 04 03 ND 04 030 ND 040 <		02N20W03H01S	10/30/2020	ΠD	180	54	QN	27	QN	612	0.2	QN	ю	14	10	8.9		90.4	370	QN	7.8
ORMONENTIS 1028/2020 0.1 220 163 ND 163 ND <th< td=""><td></td><td>02N20W04B01S</td><td>10/28/2020</td><td>DN</td><td>200</td><td>67</td><td>QN</td><td>16</td><td>QN</td><td>694</td><td>0.3</td><td>QN</td><td>4</td><td>20</td><td>130</td><td>QN</td><td></td><td>147</td><td>440</td><td>QN</td><td>7.5</td></th<>		02N20W04B01S	10/28/2020	DN	200	67	QN	16	QN	694	0.3	QN	4	20	130	QN		147	440	QN	7.5
CANZONNO-LONG S 922/2020 0.4 204 ND 1910 0.2 ND ND ND ND 101 0.5 CRXZONNO-RONS 9722/2020 0.1 270 178 ND 200 0.2 ND 7 16 165 550 CRXZONNO-RONS 10227/2020 0.7 310 172 ND 750 0.2 750 755 55 55 55 31 57 CRXZONNO-RONS 108/2020 0.1 210 23 ND 756 0.2 30 ND 756 76 76 73 33 356 CRXZONNO-RONS 108/2020 0.1 100 53 ND 74 0.2 30 ND 77 78 78 78 78 78 78 78 78 78 74 74 74 74 74 74 74 74 74 74 74 76 78 78 76		02N20W04F01S	10/28/2020	0.1	220	163	DN	89	QN	1370	0.2	260	9	40		QN			1010	QN	7.3
CDN20W09007S 928902050 0.6 270 178 ND 194 ND 229 0.3 ND 545 60 220 245 612 37 617 02N2X0W10D02S 102232020 ND 700 740 ND 740 ND 75 55 50 37 781 523 02N19W15005S 102212020 0.7 360 740 ND 7 56 00 37 181 523 03N19W37605S 108/2020 0.1 170 70 74 ND 27 ND 487 0.2 30 7 181 53 33 33 35 61 47 71 17 100 7 56 50 37 187 53 33 53 33 53 33 56 43 71 71 7 56 50 37 147 71 7 56 50 37 147 7		02N20W04R03S	9/29/2020	0.4	260	204	QN	160	QN	1910	0.2	QN	5	38		QN			1440	QN	7.3
OZNZOWINGOZIS 1072/2020 ND 200 79 ND 276 0.2 ND 26 0.0 36 37 816 529 02NZOWINGOSIS 108Z020 0.7 300 172 ND 160 ND 756 0.0 37 161 73 333 161 53 161 53 161 75 33 335 161 75 33 335 161 33 161 53 33 161 53 33 355 33 355 33 355 33 355 33 355 33 355 33 161 17 31 145 33 355 33 151 33 355 33 355 35 35 151 171 171 117 100 33 145 33 355 35 35 355 35 355 35 35 35 35 35 355 35 35 <td>s Posas Vallev –</td> <td>02N20W09Q07S</td> <td>9/29/2020</td> <td>0.6</td> <td>270</td> <td>178</td> <td>ND</td> <td>194</td> <td>QN</td> <td>2290</td> <td>0.3</td> <td>Q</td> <td>5</td> <td>60</td> <td></td> <td>24.5</td> <td></td> <td></td> <td>1700</td> <td>Q</td> <td>7.3</td>	s Posas Vallev –	02N20W09Q07S	9/29/2020	0.6	270	178	ND	194	QN	2290	0.3	Q	5	60		24.5			1700	Q	7.3
Display Constructions Orbitations	st Las Posas	02N20W10D02S	10/23/2020	DN	200	79	ŊD	48	QN	728	0.2	QN	2	18		36.2			450	40	7.4
CONZONVIEDEDS 1002112020 0.7 260 140 177 ND 2640 0.4 ND 7 58 50 37 181 533 33 536 CONNENWISEDEDS 1008/2020 ND 120 83 ND 42 ND 53 31 67.4 33 33.6 CONNENWISEDES 1008/2020 ND 160 53 ND 42 ND 53 31 67.4 33 33.7 144 40 ND 37 145 33 33.7 145 33 33.7 145 33 33.7 145 33 33.7 145 33 33.7 145 33 33.7 145 33 33.7 145 33 33.7 145 33 33.7 145 33 33.7 145 33 33.7 145 33.7 145 33.7 33.7 145 33.7 145 33.7 145 33.7 145 33.7 <td>nagement Area</td> <td>02N20W10G01S</td> <td>10/8/2020</td> <td>0.7</td> <td>310</td> <td>172</td> <td>ŊD</td> <td>160</td> <td>QN</td> <td>2150</td> <td>0.2</td> <td>QN</td> <td>7</td> <td>55</td> <td></td> <td>56.8</td> <td></td> <td></td> <td>1510</td> <td></td> <td>7.3</td>	nagement Area	02N20W10G01S	10/8/2020	0.7	310	172	ŊD	160	QN	2150	0.2	QN	7	55		56.8			1510		7.3
03N19W29K065 108/2020 ND 100 53 ND 26 02 30 1 9 ND 72.5 33 33.6 03N19W29K065 108/2020 0.1 170 73 ND 28 ND 28 ND 28 ND 37 14 40 N5 31 313 313 14 40 N5 31 313 313 31<		02N20W16B06S	10/21/2020	0.7	260	140	DN	177	DN	2040	0.4	QN	7	58		3.7			1370	QN	7.4
ORN19WV29K005 101 210 83 ND 28 ND 736 0.3 19 ND 16.2 33 13 14 0.3 03N19WV31B0G65 108/27020 ND 170 53 ND 27 ND 86 0.2 10 5 31 445 03N19W31B015 1028/2020 ND 170 70 3 37 ND 56 31 445 71 117 03N2WV3EM015 1028/2020 ND 270 ND 65 ND 3 27 ND 3 17 ND 54.4 71 117 03N2WV3EM015 1027/2020 ND 270 ND 64 0.2 ND 3 17 160 ND 34.4 71 117 03N2WV3EM015 1027/2020 ND 300 91 ND 64 0.2 ND 52 110 ND 54.4 71 117 03N2WV3		03N19W29K06S	10/8/2020	DN	100	53	QN	42	QN	536	0.2	30	-	6		72.5			390	20	6.7
03N19W390E06S 108/2020 ND 160 53 ND 13 ND 487 0.2 30 2 10 ND 55 31 145 03N19W30E06S 108/20200 ND 170 23 ND 23 14 40 ND 37 145 03N19W31B01S 102/20200 ND 170 55 ND 11 ND 51 17 160 ND 37 145 03N120W280401S 102/27/2020 ND 170 55 ND 19 ND 445 02 ND 37 145 ND 37 145 03N20W380401S 102/27/2020 ND 170 55 ND 19 ND 44 ND 492 02 ND 37 145 03N20W380401S 102/27/2020 ND 170 55 ND 17 ND 440 ND 57 140 ND 57 140 ND <		03N19W29K08S	10/8/2020	0.1	210	83	ΠD	28	ΠD	736	0.3	QN	з	19		I6.2			480	QN	7.2
03N19W31B01S 10/28/2020 0.1 170 79 ND 27 ND 680 0.2 ND 3 14 40 ND 37 145 03N19W31B01S 10/28/2020 ND 190 66 ND 30 ND 627 0.4 ND 3 17 ND 64 35 85.1 03N20W34601S 10/27/2020 ND 210 75 ND 440 ND 3 17 160 ND 37 117 03N20W34601S 10/27/2020 ND 170 10 ND 450 0.2 ND 49 71 117 03N20W34601S 10/37/2020 ND 170 ND 46 0.3 ND 47 17 106 53 30 13 116 107 107 107 107 107 107 107 11 100 107 117 116 116 102 101 107 10<		03N19W30E06S	10/8/2020	ND	160	53	DN	13	DN	487	0.2	30	2	10		5.5		37.4	300	30	7.3
03N20W28H015 10281/2020 ND 190 66 ND 30 ND 627 ND 3 17 ND 64 37 11 117 03N20W28U045 10277/2020 0.2 260 68 ND 44 ND 646 0.2 ND 54.4 71 117 03N20W28U045 10277/2020 ND 210 72 ND 64 0.2 ND 54.4 71 117 03N20W36P015 10277/2020 ND 210 73 ND 16 ND 65 0.3 ND 27 100 23 20 03N20W6F015 929/2020 ND 160 17 ND 864 0.3 ND 5 27 140 ND 56 157 02N20W0F0315 929/2020 ND 161 ND 161 ND 864 0.3 ND 5 27 140 ND 56 157 02N20W0F0		03N19W31B01S	10/28/2020	0.1	170	79	QN	27	QN	680	0.2	QN	ю	14		QN		145	450	QN	7.5
OBNZOWZ8J045 10/27/2020 0.2 260 68 ND 144 ND 919 0.5 ND 54.4 71 175 102 102 102 102 ND 31 126 136		03N20W26H01S	10/28/2020	DN	190	66	ŊD	30	QN	627	0.4	QN	з	17		6.4		35.1	370	QN	7.5
OBNZOW34G015 10/28/2020 ND 210 72 ND 11 ND 3 17 150 ND 31 126 03NZOW36P015 10/27/2020 ND 170 55 ND 19 ND 492 0.2 ND 1 1 ND 24.5 29 39.2 03NZOW36P015 10/27/2020 ND 17 ND 55 0.3 ND 5 140 ND 55 140 02NZOW06F015 929/2020 0.1 180 51 ND 16 ND 55 0.3 ND 2 12 80 17 16 17 ND 55 0.3 ND 21 10 ND 55 16 ND 55 0.3 ND 21 16 ND 56 135 147 02N220W06F015 929/2020 0.1 180 51 ND 151 ND 151 ND 151 17		03N20W28J04S	10/27/2020	0.2	260	68	QN	44	QN	919	0.5	QN	з	32	-	54.4		117	560	40	7.3
03N20W36P015 10/27/2020 ND 170 55 ND 192 0.2 ND 1 1 ND 24.5 23 33.2 202N20W6R015 19/29/2020 ND 127 ND 17 ND 55 23 160 ND 53 20.3 ND 5 23 160 ND 53 20.3 ND 5 23 160 ND 53 20.3 ND 5 23 160 ND 54 98 96.5 147 202020017103 10/12020 0.5 270 181 ND 141 ND 556 0.3 ND 5 24 195 160 54 20202017 10/19/2020 0.3 300 70 ND 141 ND 141 ND 145 0.3 100 141 143 147 143 143 147 143 141 143 143 143 143 143 <		03N20W34G01S	10/28/2020	DN	210	72	QN	11	QN	646	0.2	QN	ю	17		QN		126	410	QN	7.5
OZNZOWOGJOTS 10/30/2020 ND 30 91 ND 16 ND 55 195 105 105 195 <t< td=""><td></td><td>03N20W36P01S</td><td>10/27/2020</td><td>ND</td><td>170</td><td>55</td><td>ND</td><td>19</td><td>ND</td><td>492</td><td>0.2</td><td>ND</td><td>1</td><td>11</td><td></td><td>24.5</td><td></td><td>39.2</td><td>310</td><td>110</td><td>7.6</td></t<>		03N20W36P01S	10/27/2020	ND	170	55	ND	19	ND	492	0.2	ND	1	11		24.5		39.2	310	110	7.6
02N20W06J01S 10/30/2020 ND 300 911 ND 16 ND 5 27 140 ND 53 2093 02N20W06F01S 92/9/2020 0.1 270 73 ND 17 ND 864 0.3 ND 5 27 140 ND 55 195 02N20W06F01S 92/9/2020 ND 180 51 ND 15 ND 55 12 80 ND 55 195 02N20W08F01S 92/9/2020 ND 180 51 ND 151 ND 154 ND 55 12 10<		-	-				Ī		Ī	Ī			-	Ī	-	Ī	-	-	-	-	
D2N20W06R01S 9/29/2020 0.1 270 73 ND 17 ND 864 0.3 ND 5 140 ND 55 195 02N20W06R01S 9/29/2020 ND 180 51 ND 16 ND 550 0.3 ND 2 12 80 ND 29 98 02N20W08F01S 9/29/2020 ND 180 51 ND 161 ND 55 0.3 ND 2 12 80 ND 23 96.5 02N20W08F01S 9/29/2020 0.5 270 181 ND 151 ND 147 ND 31 96.5 147 02N21W04002S 10/1/2020 0.3 340 67 ND 145 ND 143 143 143 02N21W04002S 10/1/2020 0.3 340 67 ND 140 13 143 02N21W04002S 10/7/2020 0.3 340 184 <t< td=""><td></td><td>02N20W06J01S</td><td>10/30/2020</td><td>ND</td><td>300</td><td>91</td><td>ND</td><td>16</td><td>DD</td><td>952</td><td>0.3</td><td>Q</td><td>5</td><td>33</td><td>160</td><td>Q</td><td></td><td></td><td></td><td>QN</td><td>7.4</td></t<>		02N20W06J01S	10/30/2020	ND	300	91	ND	16	DD	952	0.3	Q	5	33	160	Q				QN	7.4
OZNZOWOTRO3S 9/29/2020 ND 180 51 ND 16 ND 550 0.3 ND 2 12 80 ND 29 38 02NZOWORFO1S 9/29/2020 ND 180 51 ND 151 ND 536 0.3 ND 2 10 ND 31 96.5 02NZOWORF01S 10/1/2020 0.5 270 181 ND 151 ND 2 12 100 ND 31 96.5 02NZOW0150 10/1/2020 0.2 270 181 ND 151 ND 16 13 10 141 02NZUW0151 10/1/2020 0.3 300 70 ND 65 ND 145 103 141 143 14		02N20W06R01S	9/29/2020	0.1	270	73	QN	17	QN	864	0.3	QN	5	27	140	Q				DN	7.6
O2N2OWORFOIS 9/29/2020 ND 180 51 ND 14 ND 536 0.3 ND 2 12 100 ND 31 96.5 02N2OWORFOIS 10/1/2020 0.5 270 181 ND 151 ND 1940 0.3 ND 6 58 240 19.5 160 524 02N2VWORDOS 10/1/2020 0.3 300 70 ND 65 ND 3 33 ND 44.8 89 147 02N2VWORDOS 10/1/2020 0.3 300 70 ND 65 ND 1450 0.3 33 104 205 02N2VWORDOS 10/7/2020 0.3 300 70 ND 45 ND 450 147 104 205 02N2VWORDOS 10/7/2020 0.3 300 70 ND 43 80 143 143 02N2VWORDOS 10/7/2020 0.3 300 70		02N20W07R03S	9/29/2020	DN	180	51	QN	16	QN	550	0.3	QN	2	12	80	QN	29			QN	7.7
O2N20W17L01S 10/1/2020 0.5 270 181 ND 151 ND 1940 0.3 ND 6 58 240 19.5 160 524 02N21W04Q02S 10/1/2020 0.2 270 75 ND 66 ND 1160 0.3 33 ND 44.8 89 147 02N21W04Q02S 10/1/2020 0.3 300 70 ND 66 ND 1160 0.3 33 ND 44.8 89 147 02N21W09N01S 10/19/2020 0.3 300 70 ND 66 ND 1450 0.3 33 50 2 164 318 02N21W10G03S 10/7/2020 0.3 340 52 ND 1450 0.3 30 73 104 205 276 164 318 02N21W11A02S 10/7/2020 0.2 240 122 ND 48 ND 143 107 134 143 <td></td> <td>02N20W08F01S</td> <td>9/29/2020</td> <td>QN</td> <td>180</td> <td>51</td> <td>ND</td> <td>14</td> <td>Q</td> <td>536</td> <td>0.3</td> <td>Q</td> <td>2</td> <td>12</td> <td>100</td> <td>Q</td> <td></td> <td></td> <td>_</td> <td>QN</td> <td>7.6</td>		02N20W08F01S	9/29/2020	QN	180	51	ND	14	Q	536	0.3	Q	2	12	100	Q			_	QN	7.6
O2N21W04Q02S 10/7/2020 0.2 270 75 ND 62 ND 998 0.4 ND 3 33 ND 44.8 89 147 02N21W08H03S 10/19/2020 0.3 300 70 ND 66 ND 1160 0.3 ND 3 28 60 14.8 104 205 02N21W08H03S 10/19/2020 0.3 340 52 ND 66 ND 1450 0.2 50 5 3 134 143 02N21W10603S 10/7/2020 0.3 340 52 ND 445 ND 5 3 70 ND 5 3 144 143 02N21W10603S 10/7/2020 0.3 340 52 ND 145 0.2 70 ND 5 276 76 143 02N21W11A02S 10/7/2020 0.1 240 73 ND 4 23 60 0.4 78 <		02N20W17L01S	10/1/2020	0.5	270	181	QN	151	QN	1940	0.3	Q	9	58		19.5	_	·		50	6.8
O2N21W08H03S 10/19/2020 0.3 300 70 ND 66 ND 1160 0.3 ND 3 28 60 14.8 104 205 02N21W09N01S 10/21/2020 0.4 340 81 ND 65 ND 1450 0.2 50 6 33 50 2 164 318 02N21W09N01S 10/7/2020 0.3 340 52 ND 45 ND 6 33 50 2 164 318 02N21W10G03S 10/7/2020 0.2 330 109 ND 34 ND 1450 0.3 30 3 68 ND 75 276 02N21W11A02S 10/7/2020 0.1 240 73 ND 36 ND 43 131 143 02N21W11A02S 10/7/2020 0.1 240 21 ND 48 0.3 36 ND 47 131 02N21W11A02S 10/7/2		02N21W04Q02S	10/7/2020	0.2	270	75	DN	62	ND	998	0.4	Q	с	33		14.8				Q	7.2
· 02N21W09N01S 10/21/2020 0.4 340 81 ND 65 ND 1450 0.2 50 6 33 50 2 164 318 02N21W09N01S 10/7/2020 0.3 340 52 ND 49 ND 1020 0.2 50 3 134 143 02N21W10G03S 10/7/2020 0.3 340 52 ND 49 ND 190 0.3 ND 5 39 70 ND 72 276 143 02N21W110Q04S 10/7/2020 0.2 300 79 ND 34 ND 881 0.3 30 3 68 ND 75 276 02N21W11A02S 10/7/2020 0.1 240 71 ND 881 0.2 30 3 68 ND 75 74 137 02N21W11A02S 10/7/2020 0.1 240 73 74 137 74 137		02N21W08H03S	10/19/2020	0.3	300	70	QN	66	QN	1160	0.3	Q	ო	28	, 09	4.8		_		Q	7.5
02N21W10G03S 10/7/2020 0.3 340 52 ND 49 ND 1020 0.2 ND 6 22 50 3 134 143 02N21W10G04S 10/7/2020 0.2 330 109 ND 34 ND 6 22 50 3 134 143 02N21W10Q04S 10/7/2020 0.2 330 109 ND 34 ND 15 39 70 ND 75 276 02N21W11A02S 10/7/2020 0.2 300 79 ND 34 ND 982 0.2 30 5 32 60 0.4 78 181 02N21W11A03S 10/7/2020 0.1 240 74 ND 881 0.2 30 5 32 60 0.4 78 181 02N21W12H02S 10/7/2020 0.1 240 74 ND 78 881 0.2 ND 4 24 ND 1	s Posas Valley –	02N21W09N01S	10/21/2020	0.4	340	81	ND	65	ND	1450	0.2	50	9	33	50	2					7.7
02N21W10Q04S 10/23/2020 0.2 330 109 ND 15 39 70 ND 75 276 02N21W11A02S 10/7/2020 0.2 240 212 ND 122 ND 1940 0.3 30 3 68 ND 181 101 421 02N21W11A02S 10/7/2020 0.2 240 212 ND 34 ND 881 0.3 30 3 68 ND 181 101 421 02N21W11A03S 10/7/2020 0.1 250 68 ND 34 ND 881 0.2 30 5 32 60 0.4 78 137 02N21W13A01S 10/7/2020 0.1 240 74 ND 78 0.2 ND 4 24 ND 55 159 02N21W13A01S 10/7/12020 0.1 240 74 ND 78 0.2 ND 74 21 177 177	st Las Posas	02N21W10G03S	10/7/2020	0.3	340	52	ŊD	49	QN	1020	0.2	Q	9	22	50	ი		_			7.5
10/7/2020 0.2 240 212 ND 122 ND 1940 0.3 30 3 68 ND 181 101 421 10/7/2020 0.2 300 79 ND 34 ND 982 0.2 30 5 32 60 0.4 78 181 10/7/2020 0.1 250 68 ND 52 ND 881 0.2 ND 4 24 ND 132 74 137 10/7/2020 0.1 240 74 ND 788 0.3 ND 4 24 ND 55 159 10/7/2020 0.1 240 74 ND 788 0.3 ND 4 21 70 ND 55 159 10/7/2020 0.3 280 83 ND 52 ND 74 21 477 477 10/7/2020 0.3 280 83 ND 52	nagement Area	02N21W10Q04S	10/23/2020	0.2	330	109	QN	34	QN	1190	0.3	Q	5	39						QN	7.3
10/7/2020 0.2 300 79 ND 34 ND 982 0.2 30 5 32 60 0.4 78 181 10/7/2020 0.1 250 68 ND 52 ND 881 0.2 ND 4 24 ND 13.2 74 137 10/7/2020 0.1 240 74 ND 14 ND 788 0.3 ND 4 21 70 ND 55 159 10/7/2020 0.3 280 161 ND 96 ND 1720 0.2 ND 7 43 40 29.2 141 477 10/7/2020 0.3 280 83 ND 52 ND 1730 0.2 30 6 32 60 ND 477 10/7/2020 0.3 280 83 ND 1730 0.2 ND 6 32 50 ND 477 238		02N21W11A02S	10/7/2020	0.2	240	212	ND	122	ND	1940	0.3	30	3	68					440	40	7.1
10/7/2020 0.1 250 68 ND 52 ND 881 0.2 ND 4 24 ND 13.2 74 137 10/7/2020 0.1 240 74 ND 14 ND 788 0.3 ND 4 21 70 ND 55 159 10/7/2020 0.3 280 161 ND 96 ND 1720 0.2 ND 7 43 40 29.2 141 477 10/7/2020 0.3 280 161 ND 52 ND 1130 0.2 ND 6 32 50 ND 107 238 10/7/2020 0.6 310 107 ND 62 ND 163 0.3 30 6 33 60 0.9 107 238		02N21W11A03S	10/7/2020	0.2	300	79	ND	34	ND	982	0.2	30	5	32		0.4				ND	7.5
10/21/2020 0.1 240 74 ND 14 ND 788 0.3 ND 4 21 70 ND 55 159 10/7/2020 0.3 280 161 ND 96 ND 1720 0.2 ND 7 43 40 29.2 141 477 10/7/2020 0.3 280 83 ND 52 ND 1130 0.2 ND 6 32 50 ND 107 238 10/7/2020 0.6 310 107 ND 62 ND 163 0.3 30 6 43 60 0.9 161 423		02N21W12H02S	10/7/2020	0.1	250	68	ND	52	ND	881	0.2	ND	4	24		3.2				40	7.4
10/7/2020 0.3 280 161 ND 96 ND 1720 0.2 ND 7 43 40 29.2 141 477 10/7/2020 0.3 280 83 ND 52 ND 1130 0.2 ND 6 32 50 ND 107 238 10/7/2020 0.6 310 107 ND 62 ND 163 0.3 30 6 43 60 0.9 161 423		02N21W13A01S	10/21/2020	0.1	240	74	QN	14	QN	788	0.3	QN	4	21		QN				QN	7.6
10/7/2020 0.3 280 83 ND 52 ND 1130 0.2 ND 6 32 50 ND 107 238 10/7/2020 0.6 310 107 ND 62 ND 1630 0.3 30 6 43 60 0.9 161 423		02N21W15M04S	10/7/2020	0.3	280	161	Ŋ	96	QN	1720	0.2	QN	7	43		29.2			1230	QN	7.4
10/7/2020 0.6 310 107 ND 62 ND 1630 0.3 30 6 43 60 0.9 161 423		02N21W16J03S	10/7/2020	0.3	280	83	ND	52	ND	1130	0.2	ND	9	32		ND					7.4
		02N21W17F05S	10/7/2020	0.6	310	107	ND	62	ND	1630	0.3	30	9	43		0.9				DN	7.4

Table D-1 General Minerals (cont.)

		Date	ш	HCO ³⁻	Ca	CO ₃ ²⁻	CI ⁻	Cu	ЕC	ц.	Fe K	Mg	Mn	NO3	D ₃ - Na	a SO4 ²⁻	TDS	Zn	Hq
	02N21W17N03S	9/9/2020	0.7	250	128	QN	47				$\left \right $	H	H	H		$\left \right $		QN	7.3
	02N21W18H01S	10/21/2020	0.6	310	290	QN	154				ND 8	·		132				QN	7
Las Posas Valley –	02N21W18H14S	10/21/2020	0.4	310	83	QN	48	QN	1380 (0.1			50			1 358	950	QN	7.6
West Las Posas	02N21W20A02S	11/10/2020	0.6	250	115	Q	48	_	-	_	_		_		`			a	7.3
Management Area	03N20W32H04S	10/23/2020	0.2	350	137		24	-	1370 (_	_		-	+	+	388	+		~ ' '
	03NZ1W35P02S	10/1/2020	0.2	260	92		81	-	_	_	_	-			.1 94	_	+		1.1
	03N21W36Q01S	10/8/2020	0.2	280	84	nN	68	ND	_	0.4	4 UN	43	_	/3.8		145	690	ND	7.4
Lockwood Valley	08N21W33R03S	12/30/2020	0.7	270	4	QN	16	10	923 (0.5	40 ND	33	Ð	6.4	4 163	3 178	560	QN	9.2
	02N22W09K07S	9/2/2020	0.4	210	135	DN	68	Q		0.2	ND 5	25		QN		3 470		QN	7.4
	02N22W10N04S	9/2/2020	0.4	270	138	ND	48				ND 4	45			0 109			ND	7.2
	02N23W13F02S	9/2/2020	0.6	400	147	DN	65	Q	1630 (ND 5	41		ND	D 142	2 400	1080	ND	7.2
	02N23W13K03S	9/2/2020	0.6	360	156	DN	75	QN	1760 (0.4 N	ND 6	48		2.8	8 158	8 476		DN	7.2
	04N22W04P05S	12/10/2020	ND	260	116	ND	26	QN		0.4 N	ND ND		ND		.6 41			ND	6.7
	04N22W04Q01S	11/20/2020	DN	240	107	QN	27	QN	977 (0.3 N	ND ND	31	QN			5 211	640	80	7.2
	04N22W05D03S	12/10/2020	ND	280	141	ND	42		1060 (0.3 N	ND 1	35			.2 38	3 236	720	ND	6.6
	04N22W05H04S	11/20/2020	ND	280	115	ND	20	ND	940 (0.2	ND 1		ND		.3 28		680	ND	7.2
	04N22W05M04S	12/10/2020	ΠN	340	145	DN	27	QN		0.2 \	UN UN	ЭБ С	DN .		.9 34	4 225		ΩN	6.8
	04N22W06E06S	11/20/2020	ND	310	118	ND	81		1150 (0.3 N	ND 1					3 177	790	ND	6.6
Cipi Valley	04N22W06J09S	11/20/2020	ND	270	124	ND	31	ND	977 (0.2 N	ND 1	28		26.4	.4 32	211	690	ND	6.8
	04N22W06K10S	12/10/2020	ND	280	126	ND	30	ND	981 (ND 1	30				9 206		ND	6.8
	04N23W01J03S	11/20/2020	DN	320	70	QN	23	10	941 (0.5 D	DN DN	0 16	6	0.4	4 111			QN	7.1
	04N23W01K02S	11/20/2020	DN	340	107	QN	37	QN	1020 (0.6	DN DN	D 27	Q N	0.8	8 74	4 188		QN	7
	04N23W12B03S	11/20/2020	DN	290	172	QN	360	QN	-	0.4	ND 2	40			`		-	QN	7.1
	04N23W12H02S	9/16/2020	DN	300	121	QN	24	Q		0.3								QN	7.5
	05N22W32K02S	12/10/2020	0.1	360	181	DN	47	QN			_	34		5.4	4 52	2 308		QN	6.6
	05N22W33J01S	11/20/2020	QN	330	182	QN	50	Q	1380 (0.5	30 2	44	140				1010	QN	6.8
-			ļ		ľ	ļ	ſ	-	F	ŀ	}	ŀ		-	-	-			
1	02N21W07P04S	10/19/2020	0.6	310	174	QN	71				ND 7	_			`		1360	QN	7.3
Oxnard – Forebay	02N22W13L08S	11/12/2020	0.6	240	141	Q	47	_		5								Q	7.3
Management Area	02N22W23H07S	11/20/2020	0.7	280	198	DN	66	_		5							`	ND	7.1
	02N22W23Q01S	11/20/2020	0.7	250	131	ND	59	QN	1320 (0.5 D	ND 5	48	DN ND	7.3	3 84	4 363	960	20	7.4
	01N21W04D04S	12/2/2020	0.4	330	61	DN	100			0.3 4	40 9	25	50		D 145			DN	7.5
	01N21W07H05S	11/25/2020	0.6	260	185	ND	123				ND 5		510				· -	ND	7.2
Constd	01N21W08R01S	12/2/2020	0.3	280	81	ND	63	ND	1140 (0.3 N	ND 6	30		ND	011 C		710	ND	7.6
Oviaid	01N21W16M03S	11/25/2020	0.5	300	75	DN	109				30 7				0 170	0 265		QN	7.4
	01N21W17B02S	9/25/2020	0.4	260	97	DN	39		0					Q	0 117		-	QN	7.5
	01N21W19P03S	11/23/2020	0.2	300	59	QN	50	Q	811 (0.3	ND 5	20	Q		0 85	5 73.3	490	Q	7.7

GW Basin/Subbasin	SWN	GW Basin/Subbasin SWN Date	В	HCO ₃ -	Ca	CO3 ²⁻	C.	Cu	ЕC	ĹL.	Fe	Z Z	1g M	Z u	103-	la SO₄ ²	⁴ ²⁻ TDS		Ha
	01N21W20B01S	11/23/2020	0.6	250	104	QN	37		-	-	Q		39 8(-		-	-	Q	7.5
	01N21W20K03S	11/5/2020	0.5	260	88	ΠN	44		_		40						8 770		7.4
	01N21W21H02S	12/2/2020	0.4	280	58	DN	98	_	_		ND	4 3			ND 1				7.5
	01N21W21K03S	10/1/2020	0.3	250	48	Q	53	_			Q	_		_					7.5
	01N21W22C01S	12/2/2020	0.4	300	61	ND	102				QN								7.5
	01N21W28D01S	12/2/2020	0.4	250	82	ND	76				DN								7.5
	01N21W28H03S	11/5/2020	0.5	350	72	ΠN	163		_		40								7.4
	01N21W29B03S	11/10/2020	0.6	290	142	ΠN	104				QN						1 1020		7.2
	01N21W29K02S	10/1/2020	0.6	290	123	QN	52				40								7.1
	01N21W33A01S	11/12/2020	0.4	310	145	QN	268				QN								7.2
	01N22W03F05S	9/9/2020	0.7	250	128	ΠN	47		_		DN	5 4							7.3
	01N22W03F07S	9/9/2020	0.8	320	240	ΠN	87		_		DN								7.1
	01N22W06B01S	11/19/2020	0.9	310	193	QN	77				QN								7.2
	01N22W06R02S	11/5/2020	0.8	270	197	QN	71				QN								7.1
	01N22W12M01S	12/2/2020	0.8	260	210	QN	67				30	7 6							7.2
	01N22W12N03S	12/2/2020	0.5	250	106	ΠN	38		_		DN	7 3							7.5
	01N22W23R02S	11/23/2020	0.6	240	130	QN	46				40	7 4							7.4
	01N22W24B04S	11/5/2020	0.6	240	122	ΠN	40		_		30								7.3
	01N22W24C03S	9/25/2020	0.6	240	127	ΠN	42		_		30								7.4
	01N22W24M03S	9/25/2020	0.6	240	139	ND	107	_	_		DN								7.3
	01N22W25K01S	10/1/2020	0.7	260	166	ND	246	_	_		40								7
Oxnard	01N22W25K02S	10/1/2020	0.6	250	87	QN	37				QN	5 4		_					7.5
	01N22W26D05S	9/25/2020	0.8	240	367	QN	55		_		50								7.5
	01N22W26K03S	9/25/2020	0.4	250	104	QN	47	_			Q			_					7.6
	01N22W26M03S	9/25/2020	0.5	240	125	QN	55	_			Q	6 4		_					7.5
	01N22W26P02S	9/25/2020	0.4	260	86	QN	41	_			Q			_					7.7
	01N22W26R04S	10/1/2020	0.6	240	133	QN	159	_			Q			_					7.3
	02N21W20Q05S	9/9/2020	0.6	320	104	QN	66				Q								7.5
	02N21W29E04S	11/10/2020	0.5	270	98	Q	57	_			Q			_		_	_		7.3
	02N21W30A02S	9/9/2020	0.5	240	108	Q	52	-	_		g		_	-	_	-	-	-	7.5
	02N22W19J03S	11/5/2020	9.0	260	13/		25	-	_	_			_	_	_	_	_	_	
	UZNZZWZ4PUTS	9/9/2020	0.5	240	011		44	-	0/21	_		4 u	_	-	_	CS 0/	890		5.7 4
	02N22W241 020	11/5/2020	- 	320	270		107		_	-			_		-	_	+	-	t - C
	02N22W30F03S	11/20/2020	0.7	250	119	Q	45	-	-	_	Q	+	_	-	_	93 38	_	_	7.3
	02N22W31B01S	11/19/2020	0.7	240	147	QN	55	QN	-		QN			-	-		-		7.2
	02N22W31D02S	9/2/2020	0.6	250	155	QN	53	QN	1500	0.6	QN		50 130		22.3 1	104 447			7.2
	02N22W32C04S	11/25/2020	0.6	260	152	DN	57				DN	5 5				-			7.4
	02N22W36E02S	9/9/2020	0.6	250	119	ND	48				DN								7.4
	02N22W36E03S	9/9/2020	0.6	240	111	ND	47	_	1340		80						6 940		7.2
	02N22W36E04S	9/9/2020	0.9	290	221	Q	62	_	_		Q	2 2		_	_				7.2
	02N22W36E05S	9/9/2020	0.9	290	189	Q	63	_	_		Q	9		_	_				7.2
	02N23W25M01S	11/5/2020	0.6	220	135	DN	52	_	_		30	9		_					6.6

Table D-1 General Minerals (cont.) GW Basin/Subbasin SWN	al Minerals (o	cont.) Date	В	HCO ₃ -	Ca	CO3 ²⁻	с с	Cu	ц ЕС	Fe	\mathbf{x}	Mg	Mn	NO3-	Na	SO4 ²⁻	TDS	ZN	Hq
	04N18W30J04S	8/31/2020	0.5	240	76	Q	68 1	P Q	1120 0.6	0 ND		29	g	9.6	67	216	710	30	7.5
	04N19W25H01S	8/27/2020	0.5	280	124	QN	108 1	ND 1	1490 0.7	ZN ND	9	42	Q	25.6	113	315	1000	QN	7.3
Dire	04N19W25M03S	8/27/2020	0.7	390	253	ND	60 h		2690 1	ND	7	153	360	1.8	182	1090	2330	ND	7
5	04N19W26H01S	8/27/2020	0.7	300	143	ND		ND 1		Z ND		59	ND	24.4	121	429	1230	ND	7.4
	04N19W26J03S	8/31/2020	0.5	250	114	ND	107		1450 0.7	Z ND	5	43	ND	15.6	105	327	980	ND	7.5
	04N19W34J04S	8/31/2020	0.5	240	126	Q	56	DN D	1390 0.7	DN 2	2 2	49	Q	11.1	81	391	1020	Q	7.3
	01N21W01B05S	9/25/2020	0.3	370	50	QN					6	54	50	Q	149	63.4	790	ND	7.4
	01N21W01D08S	11/19/2020	0.4	360	83	QN						65	QN	QN	157	214	1090	ND	7.1
	01N21W01M02S	9/25/2020	0.3	360	68	QN			1500 0.2	DN	9	99	40	QN	138	190	920	DN	7.6
	01N21W02H04S	11/19/2020	0.8	340	303	QN						83	Q	128	309	805	2200	QN	6.9
	01N21W02J01S	11/19/2020	1.9	390	688	ND	410	20 5	5380 0.2	2 ND	12	150	ND	232	714	1850	4540	ND	6.8
	01N21W03D01S	10/1/2020	0.5	260	168	QN					9	48	Q	65.2	121	439	1290	QN	7
	01N21W03K01S	12/2/2020	0.5	250	168	QN			_			48	QN	25.7	115	461	1200	ND	7.3
	01N21W03L03S	11/23/2020	0.4	270	113	QN				3 ND	7	39	30	QN	132	322	970	ND	7.6
	01N21W03R01S	12/2/2020	0.6	320	182	ND	211 N	ND 2	2510 0.2	2 ND	5	73	ND	59.6	196	691	1860	ND	7.1
Discont Valley	01N21W04R02S	11/23/2020	0.3	250	118	ND	73 1	ND 1	1180 0.3	3 ND	3	34	130	14.3	87	256	790	30	7.5
rieasant vaney	01N21W10A02S	9/25/2020	0.5	270	343	ND	217		3020 0.2	2 ND	9	101	1410	77.7	182	1010	2450	320	7.2
	01N21W10G01S	12/2/2020	0.4	280	166	ND	173 1		1890 0.2	2 ND	4	56	110	8	127	464	1270	ND	7.3
	01N21W12D01S	9/25/2020	0.7	390	241	ND	333 h		3170 0.2	2 30	9	118	220	ND	270	846	2400	ND	7.2
	01N21W15D02S	12/2/2020	0.5	270	203	ND	195 1		2110 0.3	3 ND	9	63	230	2.9	147	568	1490	ND	7.3
	01N21W15H01S	9/25/2020	1.7	160	453	ND	660 h	ND 5	5690 ND	D 620	6 (182	1570	3	622	2150	4770	ND	7.2
	02N20W19F04S	10/9/2020	0.6	260	183	ND	157 1	ND 2			5	48	110	DN	164	596	1450	ND	7.1
	02N20W29B02S	11/12/2020	0.3	360	91	ND	125 1	ND 1	1300 0.3	3 30	4	64	50	5.3	125	154	790	ND	7.2
	02N21W33R02S	10/9/2020	0.2	250	76	QN						24	Q	Q	93	217	670	ND	7.4
	02N21W34C01S	10/9/2020	0.3	270	97	ND			1240 0.3	3 40	5	30	40	DN	111	272	790	ND	7.4
	02N21W34G01S	12/2/2020	0.8	370	95	QN	188 1	ND 1	1880 0.3	3 40	8	32	30	Q	279	316	1150	Q	7.5
					ĺ	Ì	ŀ	ŀ	ŀ	-									
	02N22W03E01S	9/9/2020	0.5	380	282	Q		-	_			80	460	2.3	183	1020	2140	QN	7.1
	02N22W03K02S	8/26/2020	0.5	360	153	Q	_	_				39	Q	3.4	134	434	1200	190	7.4
	03N21W09K04S	9/9/2020	0.4	300	130	Q		-	-	_		<u>з</u>	430	Q	109	386	940	QN	7.4
Santa Paula	03N21W17Q01S	9/3/2020	0.6	380	141	QN				_		57	ΩN	19.1	137	617	1530	ND	7
	03N21W21E11S	9/3/2020	0.7	340	145	Q			_		2 2	52	10	Q	147	572	1460	DN	7.2
	03N21W30F01S	8/31/2020	0.7	400	245	Q						61	190	1.3	139	733	1730	ND	7.4
	03N22W35Q01S	10/19/2020	0.9	440	298	QN	_				6	114	730	35.5	267	1180	2680	DN	7
	03N22W36K07S	11/10/2020	0.5	310	227	Q	74	DN	1850 0.4	4 ND	2 2	62	40	Q	102	603	1450	Q	7.1
			-	000	, cc	Ç	_			-	٢	C F		н ГС		576	1760	2	٢
			-	000	7		+	+	+	_	_	2	020	0.14	200	0/0	11 00	N	-
Simi Vallev	02N18W08K07S	10/8/2020	0.9	310	290	Q			_		9	95	Q	55.8	184	871	2070	DN	6.9
	02N18W09E01S	10/8/2020	0.8	300	222	Q	_	-	_		_	77	Q	29	161	686	1660	QN	7
	02N18W10A02S	10/8/2020	1.1	320	265	Q	148 1	ND 2	2560 0.5	2 ND	2	100	Q	59.6	204	809	1980	Q	6.9

Table D-1 General Minerals (cont.)	al Minerals (c	cont.)																		
GW Basin/Subbasin	SWN	Date	В	HCO ₃ ⁻	Са	CO3 ²⁻	CI-	Cu	ЕС	Ŀ	Fe	Х	Mg	Mn	NO ₃ -	Na	SO_4^{2-}	TDS	ZN	рН
	02N19W10R02S	10/9/2020	0.1	260	50	ΠD	75	ΩN	1020	0.4	DN	2	54	DD	8.8	56	170	720	ΠD	7.4
	02N19W11J03S	10/9/2020	0.2	280	59	ND	70	DN	1060	0.2	ND	1	55	ND	24.4	52	174	750	30	7.4
Tiomo Doiodo	02N19W14F01S	11/12/2020	0.1	390	106	ΠD	117	ΩN	1370	0.2	DN	1	89	DD	73.4	57	150	940	30	7.3
liella rejaua	02N19W14Q02S	10/27/2020	ΠD	330	46	ΔN	50	ΩN	896	0.1	DN	9	42	60	DN	67	102	530	QN	7.7
	02N19W15J02S	11/12/2020	0.2	410	96	ND	169	Π	1810	0.1	ND	7	113	ND	12	157	315	1230	30	7.3
	02N19W15N03S	11/12/2020	0.1	280	74	ND	80	DN	1000	0.2	ND	2	63	10	0.9	50	157	720	ND	7.3
	04N22W10K05S	9/1/2020	0.2	190	69	ΠD	23	ΩN	742	0.4	DN	3	26	DD	3.2	32	163	470	ΠD	7.2
Upper Ojai Valley	04N22W11P02S	9/10/2020	ΠŊ	210	38	ΔN	23	ΩN	511	0.2	40	1	12	120	8.3	37	36.8	310	QN	6.8
	04N22W12M03S	9/10/2020	0.1	230	59	ND	32	DN	719	0.4	ND	1	19	ND	20	43	101	460	ND	6.7
	02N23W05F01S	12/22/2020	0.7	530	45	ND	65	ND	1280	0.2	50	6	19	20	ND	189	136	760	ND	7.8
Ventura River – Lower	02N23W05K01S	9/1/2020	0.7	380	121	ND	106	ND	1600	0.6	30	7	42	150	ND	145	324	1000	ND	7.2
	03N23W32Q10S	12/22/2020	1.3	470	144	ND	376	QN	2780	0.5	DN	8	55	140	0.5	374	425	1710	QN	7
	04N23W09G03S	9/10/2020	0.4	400	134	ND	82	ND	1300	0.3	ND	2	37	ND	41.8	57	192	830	ND	6.9
	04N23W15A02S	9/16/2020	0.3	190	41	ND	86	ND	879	0.8	40	1	12	100	14.6	101	115	530	50	7.4
Ventura River – Upper	04N23W20K01S	9/10/2020	0.7	270	133	ND	32	ND	1080	0.4	ND	3	30	ND	5.8	55	284	750	30	7.1
	04N23W33M02S (Outside Basin)	9/1/2020	0.4	380	184	ND	124	10	1730	0.4	ND	3	52	ND	ND	95	393	1240	ND	7.3
C:llibrand/Tano	03N18W24C07S	10/8/2020	0.1	290	172	ND	28	DN	1210	0.2	ND	3	37	ND	10.3	46	319	860	ND	7
סווווטומווטי ומאט	03N18W24H07S	10/8/2020	0.2	350	189	ND	31	DN	1320	0.3	ND	3	40	110	2.5	53	336	930	QN	7

2020 Annual Report of Groundwater Conditions

Metals Table D	-2		
Element Name	Element Symbol	Reported Units	Laboratory Analytical Method
Aluminum	Al	µg/l	EPA 200.8
Antimony	Sb	µg/l	EPA 200.8
Arsenic	As	µg/l	EPA 200.8
Barium	Ва	µg/l	EPA 200.8
Beryllium	Be	µg/l	EPA 200.8
Cadmium	Cd	µg/l	EPA 200.8
Chromium	Cr	µg/l	EPA 200.8
Lead	Pb	µg/l	EPA 200.8
Mercury	Hg	µg/l	EPA 245.1
Nickel	Ni	µg/l	EPA 200.8
Selenium	Se	µg/l	EPA 200.8
Silver	Ag	µg/l	EPA 200.8
Thallium	ТІ	µg/l	EPA 200.8
Vanadium	V	µg/l	EPA 200.8

California Title 22 Metals

Radio Chemistry

Radio Chemistry Tab	le D-3		
Name	Element Symbol	Reported Units	Laboratory Analytical Method
Gross Alpha		pCi/l	EPA 900.0
Uranium	U	pCi/l	EPA 908.0

I adie U-2 Metais															
GW Basin/Subbasin	SWN	Date	AI	Sb	As	Ba	Be	Cd C	Cr Pb	b Hg	g Ni	i Se	e Ag	F	>
	02N19W20M04S	11/12/2020	DN	DN	3 2				13 ND		DN O	9		QN	30
Arroyo Santa Rosa Valley	02N20W23R01S 02N20W25C02S	10/9/2020 11/12/2020	2 Q	QN N	6 2 2	39.1 22.9	 2 2		15 ND 8 ND		0 10 8	7 0 3	QN N	22	56 65
					-		-					-	-	-	
Conejo	01N19W09N01S	12/17/2020	QN	QN	DN	21	DN	QN	0ND 6	QN	Q	1	ND	Q	2
Cuyama Valley	07N23W15P01S	12/30/2020	QN	QN	1 ND	10.4	DN	QN	3 ND	DN	QN	3	ND	QN	QN
Fillmore	04N20W31H04S	9/3/2020	QN	DN	ND 2	28.1	DN	QN	5 N	DN DN	1	2	QN	QN	QN
Hidden Valley	01N19W19H03S	12/17/2020	QN	2	8	11.7	DN	0N DN	0N 6	DN	0	QN	ON O	0.2	2
Las Posas Valley – East Las Posas Management Area	02N20W03H01S 03N19W29K06S 03N19W30E06S	10/30/2020 10/8/2020 10/8/2020	222	222	4 4	49.7 184 63			5 ND ND ND			ND 20		222	3 20 3
	02N20W06J01S	10/30/2020	QN	DN	ND 4	42.1	DN	QN	2 ND	DN D	ON O	DN O	DN O	QN	QN
	02N20W17L01S	10/1/2020	Q												З
	02N21W09N01S	10/21/2020	QN	QN							~				e
Las Posas Vallev – West Las Posas Management Area	02N21W11A02S	10/7/2020	Q !		_	_	-	-	_	_	-	2		-	∞ .
	02N21W11A03S	10/7/2020		-	~	_		_			~			-	4
	02N21W17F05S	10/7/2020				~		-			-		-	_	4 -
	02N21W20A02S	11/10/2020		_	2 ND 2	30 26.8	_			_					⁴ N
					-		-	-		-	-	-		-	
Lockwood Valley	08N21W33R03S	12/30/2020	QN	DN) DN	0.3	DN	, DN	4 ND	QN	DN O	0 5	Q	QN	ю
	02N22W10N04S	9/2/2020	Q	QN	1	16.4	DN	QN	Z ND	DN D	DN O	D 24	dN t	QN	4
Mound	02N23W13F02S	9/2/2020	Q		10 2										2
Ojai Valley	04N22W04Q01S 04N22W06J09S	11/20/2020 11/20/2020	QN QN		ND 3	33.3 57.1			3 ND			- 0	QN	Q Q	QN
			!		-	-	-	-		-	-			-	
Oxnard – Forebay Management Area	02N21W07P04S	10/19/2020	QN	Q	ND 2	26.8	DN	Q	7 ND	Q	0	2	QN	Q	QN
	01N21W04D04S	12/2/2020	Q	\vdash			\vdash	\vdash	H	\square	H				QN
	01N21W20K03S	11/5/2020	QN		ND 5	_						~		-	Q
	01N21W22C01S	12/2/2020	Q	Q :		_	_	_						_	g
	01N21W28H03S	11/5/2020			+	+	+	+		-	_	_		-	N
	01N21W29K02S	0707/1/01				-	_	-		_	_	-	+	-	(
Oxnard	01N22W03F05S	9/9/2020				_		_		_	_	13		-	т т
	01NZZW03F0/S	9/9/2020				_	+	_		_			+		4 (
	01N22W12M01S	12/2/2020				31.0									N
	01N22W24C03S	9/25/2020	g	-	-	-	-					-	-	+	1
·	01N22W25K01S	10/1/2020	DN		_										4
	01N22W26M03S	9/25/2020	Q	Q	ND 3	39.5	- Q	ND D	11 ND	DN	Q 0	0	Q	Q	ო

_
(cont.)
ls(
<u>jta</u>
ž
Ņ
Δ
₫
ā
Ца

GW Basin/Subbasin GW Basin/Subbasin Oxnard 02N22W3 Piru 04N19W2 Piru 04N19W2 01N21W0 01N21W0	2W/30F03S	Date	A	sb	As	Ba	Be	С С	ັບ	Pb	PG	ïŻ	d V.	۸a	F	
ard 02N22W 02N23W 04N19W 04N19W 04N21W 01N21W	VW30F03S						2	55			8		~	24	-	<
02N23W 04N19W 01N21M 01N21W		11/20/2020	ND	QN	٢	17	QN	QN	3	QN	ΔN	QN	٦	DN	DN	DN
04N19W 01N21V 01N21W 01N21W	02N23W25M01S	11/5/2020	ND	ND	ND	24.2	QN	ND	7	ND	ND	DN	2	ND	ND	з
04N19W 01N2TM 01N2TW 01N2TW																
01N21W0 01N21W0 01N21W1	W25M03S	8/27/2020	ND	QN	ND	21.7	Q	0.6	5	DN	ND	5	62	DN	DN	4
01N21W0 01N21W0 01N21W1																
01N21W0	01N21W02J01S	11/19/2020	ND	DN	4	23.7	ND	ND	10	ND	DN	ND	36	ND	ND	11
1W12N10	IW04R02S	11/23/2020	ND	ND	1	25.5	ND	ND	4	ND	ND	ND	7	ND	ND	5
	W12D01S	9/25/2020	ND	DN	2	49.3	ND	ND	16	DN	ND	2	6	ND	ND	4
Pleasant Valley 02N20W1	02N20W19F04S	10/9/2020	DN	ΔN	1	37.8	ND	ND	6	DN	ND	9	3	ND	ND	3
02N20W2	02N20W29B02S	11/12/2020	ND	DN	9	54.2	ND	ND	7	ND	DN	ND	3	ND	ND	15
02N21W3	IW34C01S	10/9/2020	ND	ND	1	54.3	ND	ND	9	ND	ND	ND	2	ND	ND	2
02N21W3	W34G01S	12/2/2020	ND	QN	ND	36.4	ND	ND	9	ND	ND	ND	4	ND	ND	ND
03N21W0	03N21W09K04S	9/9/2020	ND	QN	5	25	ND	ND	5	ΠD	ND	2	2	- DN	ND	ND
Santa Paula 03N21W2	03N21W21E11S	9/3/2020	ND	DN	ND	30.2	ND	0.6	5	ND	ND	7	2	ND	ND	ND
03N21W3	1W30F01S	8/31/2020	ΔN	QN	QN	23.1	Q	QN	45	QN	ND	з	13	ND	ΩN	13
Simi Valley 02N18W0	3W09E01S	10/8/2020	QN	QN	2	13.9	Q	Q	11	DN	QN	2	39	Q	QN	9
	00001		(((ļ	4	4	-	4	4	4	(H	4	I
Tierra Rejada 02N19W1	9W14Q02S	10/27/2020	QN	Q	2	4.7	Q	Q	4	Q	QN	Q	QN	QN	Q	7
Upper Ojai Valley 04N22W1	04N22W10K05S	9/1/2020	QN	QN	~	114	QN	Q	с	QN	QN	2	e	QN	QN	ND
	02N23W05F01S	12/22/2020	QN	CN	~	226	CN	CN	13	UN	CN	CN	QN	UN	CN	c.
Ventura River – Lower Subbasin 03N23W3	3W32Q10S	12/22/2020	QN	Q	4	30.4	Ð	Ð	12	g	Q	5	10	-	Q	4
Ventura Biver, Honer Subbasin	04N23W15A02S	9/16/2020	QN	Q	DN	46.8	QN	QN	QN	ΔN	QN	DN	2	- DN	QN	DN
04N23W	3W20K01S	9/10/2020	QN	Q	QN	29.8	Q	Q	QN	QN	Q	з	2	QN	Q	ND
			!	!	-	•	!	!		!	!			-	1	,
Gillibrand/Tapo 03N18W2	3W24H07S	10/8/2020	ND	QN	Π	49.8	QN	QN	11	ND	ND	2	14	ND	QN	e

Table D-3 Radiochemistry

GW Basin	SWN	Date	Alpha pCi/L	CE	Alpha pCi/L CE Uranium pCi/L	СЕ
Cuyama Valley	07N23W15P01S 12/30/2020	12/30/2020	3.31	1.67		
Lockwood Valley	08N21W33R03S 12/30/2020	12/30/2020	3.24	1.41		

* CE – Counting Error

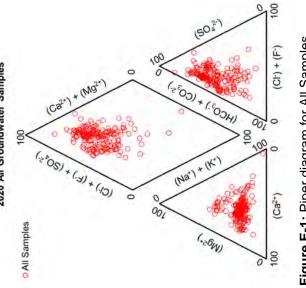
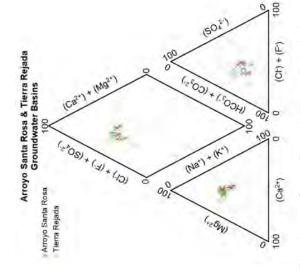
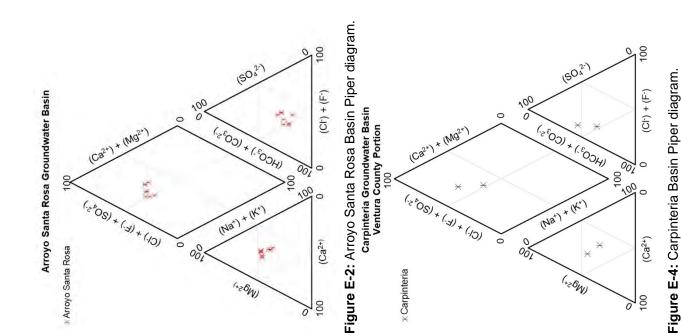
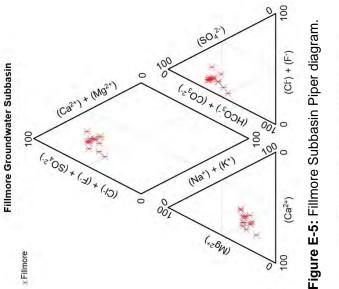
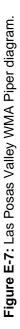





Figure E-1: Piper diagram for All Samples.



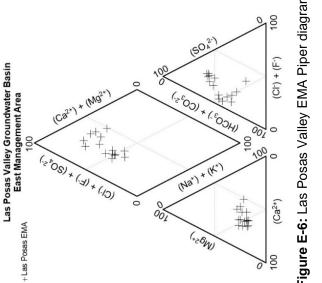
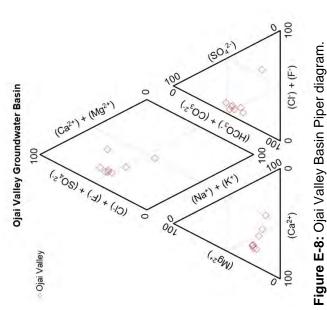



Figure E-6: Las Posas Valley EMA Piper diagram.

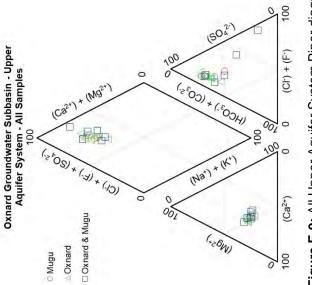


Figure E-9: All Upper Aquifer System Piper diagram.

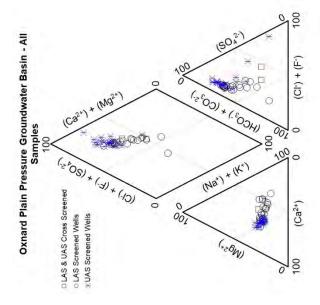
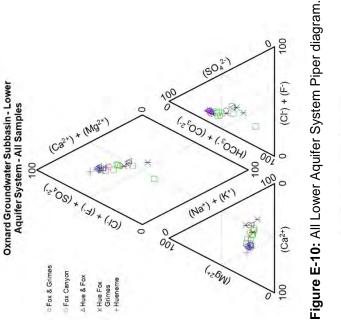
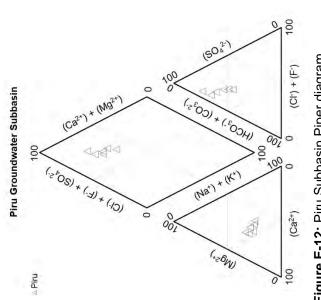
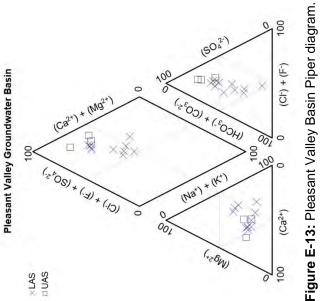





Figure E-11: Oxnard Subbasin Piper diagram All Samples.

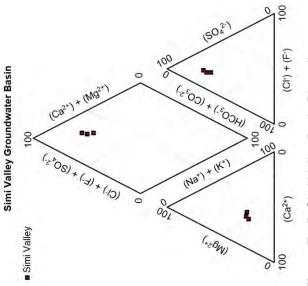
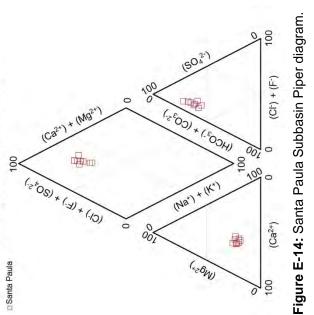



Figure E-15: Simi Valley Basin Piper diagram.

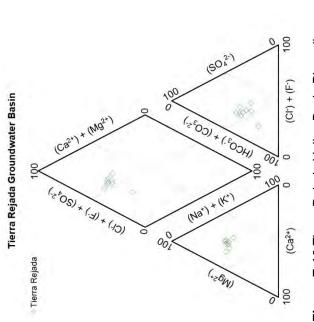
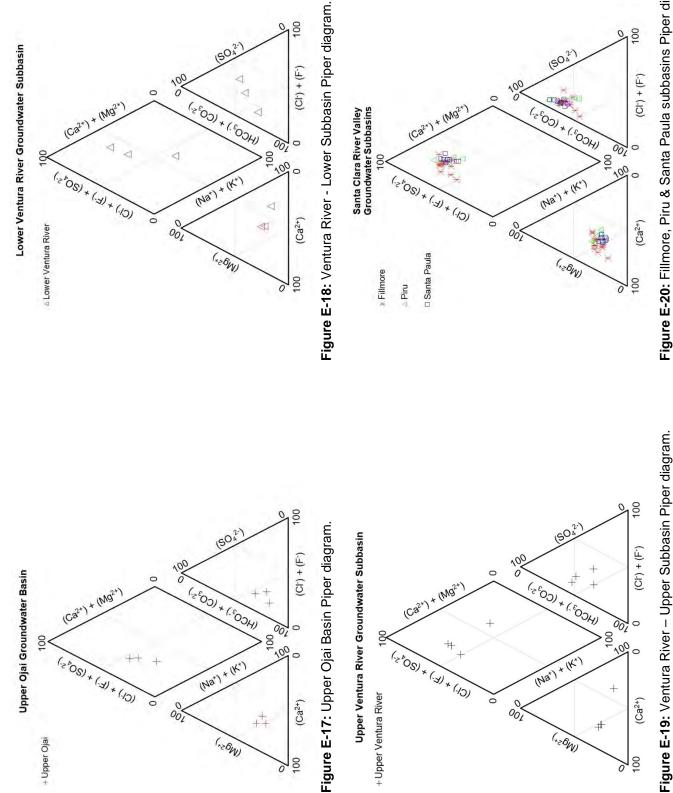
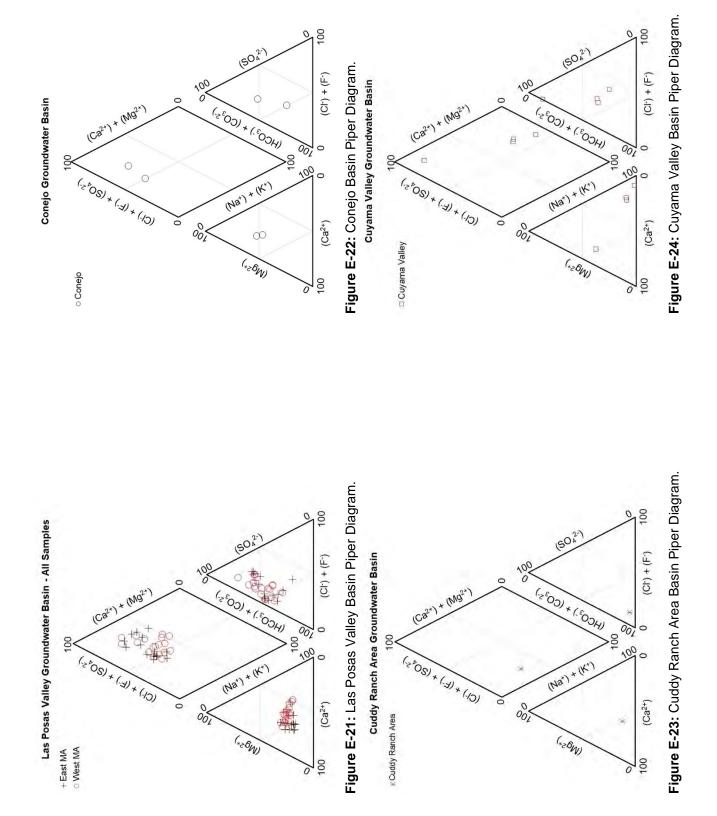
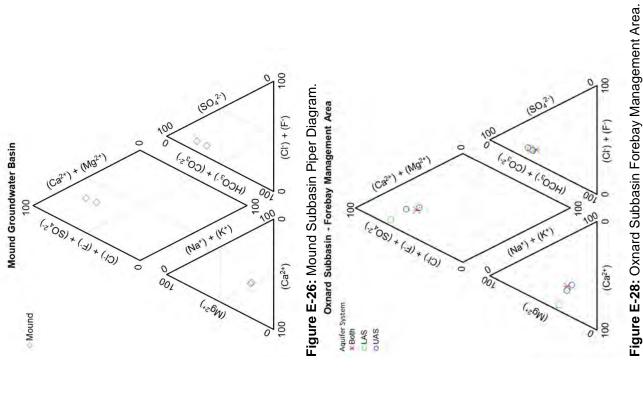
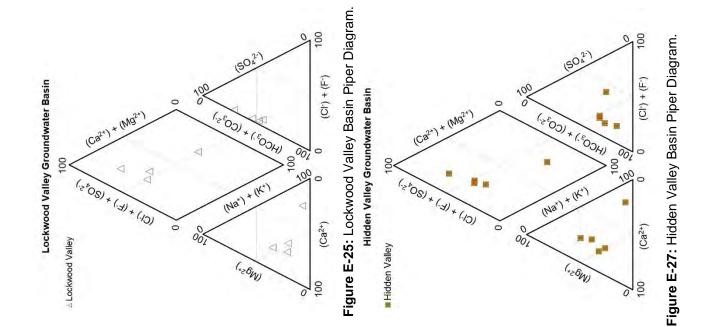
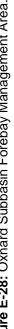



Figure E-16 Tierra Rejada Valley Basin Piper diagram.


Santa Paula Groundwater Subbasin






õ

õ

171

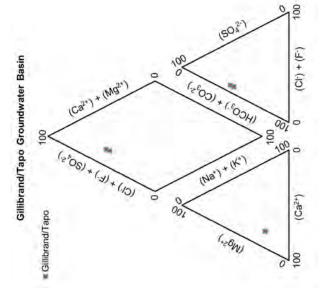


Figure E-29: Gillibrand/Tapo Basin Piper Diagram.

Appendix F - Basin Summary Sheets

The following basin summary sheets provide an overview of data, trends, and facts for groundwater basins in the County designated as high and medium priority in June of 2014 by the California Statewide Groundwater Elevation Monitoring (CASGEM) Program. Trends for groundwater levels and groundwater quality were determined over the last five years for 2020. Trend analysis used sample sets with wells that were sampled or measured consistently over the five year period where available. In some instances this resulted in a small sample set. The spatial distribution of wells may not cover the entire groundwater basin. Data from VCWPD and other agencies was also used in the trend analysis.

Arroyo Santa Rosa Basin

Groundwater Basin Surface Area	: 3,270 acres		
Irrigated Acreage	≈1,755 (estimate determined from Ventura County Ag Commissioner's data)		
Watershed	Calleguas Creek		
	: Unconfined and confined aquifers		
DWR Groundwater Basin Designation and Size	Arroyo Santa Rosa Valley Basin (4-7). Surface area 3,747 acres. (DWR, 2014)		
SGMA Basin Priority			
DWR Groundwater Basin Population	2,434 (2010)		
Known Water Supply Wells (as of July 2021)	2020 Self Reported Groundwater Water Demand Estimate (Whole basin)		
Number of Wells: 84	Extraction to FCGMA (as of Irrigation Demand @ 2 AF/Ac:3,510 AF/Yr		
	August 19, 2021) (West part of		
Active: 37	basin only) Municipal Demand @ 0.5 AF/person/Yr: 1,105 AF/Yr		
Destroyed: 32	Agricultural Extractions - 1,539 AF/Yr		
Abandoned: 6	Municipal, Industrial and Domestic - Total Demand Estimate: 4,615 AF/Yr		
Can't Locate: 9	0 AF/Yr		
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County		
"Key" well 02N20W26B03S - December level was up 1.03 feet from the March	(9 wells)		
measurement.	Two water samples are magnesium bicarbonate type and the remainder are		
	magnesium chloride type. Primary MCL Exceedances for Nitrate >45mg/L? Yes, 5 wells		
In general, for 4 wells measured in 2020 in the basin, water levels declined in 3			
wells and rose in 1 well over the course of the year from the 1st quarter reading			
to the last quarter reading.	Secondary MCL Exceedances for Sulfate >250mg/L? No		
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020		
"Key" well 02N20W26B03S: -			
	SWN Nitrate Chloride TDS Sulfate		
	02N19W19P02S		
In general for 4 wells consistently measured: (5 wells) 🦊	02N20W23G03S 🗭 🕂 🕇		
	02N19W20L01S 🦊 🦊 🖡 🕇		
	Wells are generally in the southern central part of the basin.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: Infiltration of precipitation. Subsurface flow from Tierra Rejada	Upgradient: Arroyo Santa Rosa basin receive some subsurface inflow from Tierra		
basin. Surface flow percolation from Arroyo Santa Rosa and Conejo Creek.	Rejada basin. (MWH, 2013)		
Waste water returns from residential onsite septic systems. (MWH, 2013)			
	Downgradient: No		
Potable Water Sources			
Groundwater from Arroyo Santa Rosa Basin. Imported State Water Project			
water from Metropolitan Water District via Calleguas Municipal Water District.			
Non-Potable Water Source Reclaimed water from Hill Canyon Waste Water Treatment Plant via Conejo			
Reclaimed water from hill Canyon waste water freatment Plant via Conejo			
Creek.	· Basin Prioritization Level - Medium		
Creek. DWR CASGEM Groundwate	r Basin Prioritization Level - Medium ndary inorganic contaminants above the MCL (B-118).		

Cuyama Valley Basin

Groundwater Basin Surface Area:	16,560 acres				
Irrigated Acreage:	≈1,410 (estimate dete	rmined from Ve	entura County Ag	Commissioner	r's data)
Watershed:	Cuyama River				
Aquifers:	Unconfined Aquifer				
DWR Groundwater Basin Designation and Size:	Cuyama Valley (3-13)	Surface area	242,114 Acres. ((DWR, 2014)	
SGMA Basin Priority:					
DWR Groundwater Basin Population:					
Known Water Supply Wells (as of July 2021)		Water I	Demand Estimat	e	
Number of Wells: 140	Irrigation Demand @ 2	2 AF/Ac: 2,820	AF/Yr	—	
Active: 102	-				
Destroyed: 6	Municipal Demand @	0.5 AF/person/	Yr: 618 AF/Yr		
Abandoned: 8	Total Demand Estima	te: 3,438 AF/Yr			
Non-Complaiant: 6					
Can't Locate: 18					
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwat	er Quality in C	General for All V	Vells Sampled	by County
Note: Wells are measured twice per year in the Cuyama Valley basin.			(1 well)		
	The water in one sam				
"Key" well 07N23W16R01S - Well was dry at the fall measurement.			in two samples is		e type.
	Primary MCL Exceeda			No	
Both spring and fall measurements were obtained on 3 wells in the basin in	Secondary MCL Excedances for Chloride >250mg/l? No				
2020. The water level decreased in all 3 wells from the spring measurement to	Secondary MCL Excedances for TDS >500mg/? Yes, 1 well Secondary MCL Excedances for Sulfate >250mg/? Yes, 1 well				
the fall measurement.	,		ů.	Yes, 1 well	
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020				
<u></u>	SWN	Nitrate	Chloride	TDS	Sulfate
"Key" well 07N23W16R01S: 👚					
	07N23W15P01S	_			1
In general for 4 wells consistently measured: 1 well 🦊 3 wells 👚		•			•
in general for 4 wens consistently measured. T wen 🔶 5 wens					
	Well is in the southern				
Sources of Groundwater Recharge		<u> </u>	nection to Othe	r Groundwate	r Basins
Basin Recharge: Infiltration of precipitation. Seepage from the Cuyama River.	Within Ventura County	/: None			
(DWR, 2006)					
Potable Water Sources					
Groundwater from Cuyama Valley groundwater basin.	Desin Drienitizet's s. l	Mad'			
DWR CASGEM Groundwater					
Impact Comments:Local salinity	and 105 impairments	in pasin (B-118	5)		
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending u	p 🕇 🛛 Leve	el Trending down	+	
-				-	

Fillmore Subbasin

Groundwater Basin Surface Area:	22 582 00500				
		to datamain ad f			aria data)
.		≈12,230 acres (estimate determined from Ventura County Ag Commissioner's data)		ers data)	
	Santa Clara River				
	Unconfined Aquifer		.		
DWR Groundwater Basin Designation and Size:	(DWR, 2006)	ey Basin, Fillmo	re Subbasin (4-4.0	5). Surface area 2	2,583 acres.
SGMA Basin Priority:					
DWR Groundwater Basin Population:	16,240 (2010)				
Known Water Supply Wells (as of July 2021)	2020 Self Report	ed Groundwa	ter Extraction to l	JWCD (as of July	<u>19, 2021)</u>
Number of Wells: 611		Agricultural Extractions: 40,210 AF/Yr			
Active: 447	· · · · · · · · · · · · · · · · · · ·				
Destroyed: 78 Abandoned: 29	Municipal Extractions: 2,486 AF/Yr				
Can't Locate: 51					
Non-Compliant: 6	Total Extractions: 42,696 AF/Yr				
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County			County	
"Key" well 03N20W05D01S - December level was down 14.85 feet from the	(13 wells)				
March measurement.	Two water samples are calcium bicarbonate type and the remaining eleven sample calcium sulfate type.		n samples are		
	Primary MCL Exceeda			Yes, 1 wells	
In general, for six wells consistently measured in the basin in 2020, water levels				No	
declined in all 6 wells over the course of the year from the 1st quarter reading	Secondary MCL Excee			Yes, 13 wells	
to the last quarter.	Secondary MCL Excee	dances for Sul	fate >250mg/L?	Yes, 12 wells	
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020				
	_		mpled by UWCD)		
	SWN	Nitrate	Chloride	TDS	Sulfate
"Key" well 03N20W05D01S: 👚	04N20W36P04S	1	1	1	1
•	03N21W01P08S	-			
	04N19W31F01S		`		
The 5 year trend based on 2016 through 2020 groundwater level elevations is	04N19W30D01S*	-			<u> </u>
upward.		-			X
	04N20W33C03S*		T		
	Wells are distributed th	roughout the ba	asin.		
Sources of Groundwater Recharge			nnection to Othe	r Groundwater B	asins
Basin Recharge: Infiltration of precipitation. Subsurface flow from Piru basin.	Upgradient: Yes, Piru g				
Surface flow percolation from Santa Clara River, Sespe Creek, and minor	Downgradient: Yes, Sa	inta Paula grou	ndwater basin.		
tributaries. (DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River.					
DWR CASGEM Groundwate					
Impact Comments: Many groundwater quality impairments in the basin; Nitrate WQ is locali	s problematic during dry zed and being managed		TDS, etc. (B-118).	REH - Public com	ment indicated
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up		Trending down		

Las Posas Valley Basin East Management Area

Las Posas Valley Basin East Management	Area	
Management Area Name:	East Las Posas Management Area	
ELPMA Surface Area:	27,180 acres	
Irrigated Acreage:	≈10,000 acres (estimate determined from Ventura County Ag Commissioner's data)	
Watershed:	Calleguas Creek	
Aquifers:	Unconfined and confined aquifers	
	Los Posas Valley Basin (4-8). Surface area 42,353 acres. Note: DWR groups three	
	County basins into Las Posas Valley Basin (4-8) (DWR, 2014)	
SGMA Basin Priority:	High	
DWR Groundwater Basin Population:	42,721 (2010)	
Known Water Supply Wells (as of July 2021)	2020 Self Reported Groundwater Extraction to FCGMA (as of July 30, 2021)	
Number of Wells: 402	Agricultural Extractions: 21,414 AF/Yr	
Active: 164	Agricultural Extractions. 21,414 AP/11	
Destroyed: 143	Municipal, Industrial, and Domestic Extractions: 2,029 AF/Yr	
Abandoned: 37		
Can't Locate: 54	Values are approximate based on FCGMA East and South Las Posas basins.	
Exempt: 1		
Non-Compliant: 3	Total: 23,443 AF/Yr	
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County	
"Key" well 03N20W26R03S - Not measured in 1st quarter. December level	(21 wells)	
was down 7 feet from the June measurement.	The water in 10 wells is calcium bicarbonate type, calcium sulfate type in 7 wells,	
	sodium bicarbonate type in 1 well, and sodium sulfate type in 3 wells.	
	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 3 wells	
	Secondary MCL Exceedances for Chloride >250mg/L?No	
In general, for 6 wells measured for the 1st and 4th quarters in 2020 in the	Secondary MCL Exceedances for TDS >500mg/L? Yes, 10 wells	
basin, water levels declined in all 6 wells over the course of the year.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 9 wells	
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020	
"Key" well 03N20W26R03S: 1	SWN Nitrate Chloride TDS Sulfate	
The 5 year trend based on 2016 through 2020 groundwater level elevation	02N20W16B06S	
maps varies.	03N19W29K08S 懀 📫	
Of the 12 measured wells in the basin 6 show a downward trend and 6 of the	03N19W29K06S 🦊 🖊 🕇 🕇	
wells show a rising trend.	Two wells are located in the southwest, two wells are located in the northeast.	
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins	
Basin Recharge: Infiltration of precipitation, minor stream flow across outcrops	West:Possible connection to West Las Posas basin in NW part of basin.	
of the Fox Canyon and Grimes Canyon gravels, and percolation from flow in		
the Arroyo Las Posas. (DWR, 2006) Imported State Water Project water via	South/Southeast: South Las Posas Basin.	
injection in the Calleguas Municipal Water District ASR well field.		
Potable Water Sources	Southwest: Restrictive subsurface structure between Pleasant Valley basin and East	
Groundwater from East Las Posas basin. Imported State Project Water from	Las Posas basin may cause spillover from East Las Posas to Pleasant Valley when	
Calleguas MWD to various purveyors.	basin is full.	
	er Basin Prioritization Level - High	
Impact Comments: TDS is generally high in this basin. Pubic C	comment includes reports of subsidence, overdraft and saline intrusion	
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	🕨 Level trending up 🕇 🛛 Level Trending down 📕	
,, of the orbit it of the		

Las Posas Valley Basin West Management Area

Las Posas valley Basin West Management Are			
Management Area Name:	West Las Posas Management Area (WLPMA)		
WLPMA Surface Area:	17,442 acres		
Irrigated Acreage:	≈9,950 (estimate determined from Ventura County Ag Commissioner's data)		
Watershed:	Calleguas Creek		
Aquifers:	Unconfined and confined aquifers		
DWR Groundwater Basin Designation and Size:	Los Posas Valley Basin (4-8). Surface area 42,353 acres. Note: DWR groups three		
	County basins into Las Posas Valley Basin (4-8) (DWR, 2014)		
SGMA Basin Priority:	High		
DWR Groundwater Basin Population:			
Known Water Supply Wells (as of July 2021)	2020 Self Reported Groundwater Extraction to FCGMA (as of July 30, 2021)		
Number of Wells: 164	Agricultural Extractions: 12,521 AF/Yr		
Active: 89	Agricultural Extractions. 12,521 AF/11		
Destroyed: 60	Municipal, Industrial, and Domestic Extractions: 2,350AF/Yr		
Abandoned: 9			
Can't Locate: 5	Values are approximate based on FCGMA West Las Posas basin.		
Non-Compliant: 1			
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County		
	(24 wells)		
"Key" well 02N21W11J04S - Level was down 9 feet in December from the	The water in nine wells is calcium bicarbonate type, three are sodium bicarbonate		
March measurement.	type, four are sodium sulfate type, and eight are calcium sulfate type.		
	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 4 wells		
In general, for 12 wells consistently measured in 2020 in the basin, water levels	Secondary MCL Exceedances for Chloride >250mg/L? No		
declined in 11 wells and rose in 1 well over the course of the year from the 1st	Secondary MCL Exceedances for TDS >500mg/L? Yes, 21 wells		
quarter reading to the last quarter reading.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 11 wells		
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020		
	SWN Nitrate Chloride TDS Sulfate		
"Key" well 02N21W11J04S: 🦊	02N21W15M04S 📕 🕇 🛉		
	02N21W17F05S		
For 17 wells measured, the 5 year trend based on 2016 through 2020			
groundwater level elevationis is mixed with 10 wells declining and 7 wells	02N21W11A03S		
showing an increasing water level elevation trend.	02N21W13A01S 🔿 🌩 🖡 🕇		
	Wells are in various locations in the basin.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
	East: Possible connection to East Las Posas basin in NW part of basin.		
of the Fox Canyon and Grimes Canyon gravels, and percolation from flow in			
the Arroyo Las Posas. (DWR, 2006)	Southwest: Yes, Oxnard Plain Pressure basin.		
Potable Water Sources			
Groundwater from West Las Posas basin. State Water Project water from			
Calleguas MWD to various water purveyors.	 		
	er Basin Prioritization Level - High		
Impact Comments: IDS is generally high in this basin. Public C	Comment includes reports of subsidence, overdraft and saline intrusion		
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	🔷 Level trending up 🕇 Level Trending down 🖊		

Groundwater Basin Surface Area:	13,864 acres				
Irrigated Acreage:	≈2,075 acres (estimate determined from Ventura County Ag Commissioner's da			sioner's data)	
Watershed:	Santa Clara River				
	Unconfined and confine	d aquifers			
DWR Groundwater Basin Designation and Size:			nd Subbasin (4-4.0	3) Surface ar	ea 13,864
SGMA Basin Priority:	,				
DWR Groundwater Basin Population:					
Known Water Supply Wells (as of July 2021)	2020 Self Reported	Groundwate	r Extraction to II		uby 10 2021)
Number of Wells: 86	2020 Sell Reported	Groundwale			uly 19, 2021
Active: 32		Agricultural I	Extractions: 2,976	AF/Yr	
Destroyed: 41 Abandoned: 5	Mun	icipal & Indus	trial Extractions: 2,	502 AF/Yr	
Can't Locate: 7 Non-Compliant: 1		Total Ext	ractions: 5,478 AF/	Yr	
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwate	er Quality in	General for All We	ells Sampled	by County
<u></u>			(4 wells)		
Key" well 02N22W07M02S (measured by UWCD) - November level was up 0.82 feet from the January measurement.	Three samples are c	alcium sulfate	· /	nple is sodium	sulfate type.
	Primary MCL Exceedar	and for Nitrot	0 × 45mg/1 2	No	
	-		ũ		
n general, for 1 well consistently measured in the basin in 2020, water level	Secondary MCL Exceed	dances for Ch	loride >250mg/L?	No	
Jeclined from the 1st quarter reading to the last quarter reading.	Secondary MCL Exceed	dances for TD	S >500mg/L?	Yes, 4 wells	
	Secondary MCL Exceed	dances for Su	lfate >250mg/L?	Yes, 4 wells	
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020				
	(Based on wells sampled by other agencies)(D=Deep aquifer S=Shallow ag		allow aquifer		
Key" well 02N22W07M02S: 🦊	<u>SWN</u>	<u>Nitrate</u>	<u>Chloride</u>	TDS	Sulfate
	02N22W08G01S (D)	₽	\Rightarrow	1	1
The Event transfer wells measured by VCWDD based on 2016 through 2020	02N22W07M03S (S)			*	
The 5 year trend for wells measured by VCWPD based on 2016 through 2020 groundwater level elevations is mixed with one well rising and 2 wells declining.				-	
produktwater level elevations is mixed with one well fishing and 2 wells declining.	02N22W09L04S (S)	•	•		
	Wells are generally in th	ne center of th	e basin along a ea	st to west line	
Sources of Groundwater Recharge			nection to Other	Groundwate	r Basins
	I Ingradiant: Vac. Canta	Paula ground	water basin.		
	Opgraulerit. res, Sarita				
Basin Recharge: Infiltration of precipitation. Subsurface flow from Santa Paula basin. Surface flow percolation from Santa Clara River and, percolation of					
asin. Surface flow percolation from Santa Clara River and, percolation of lirect precipitation into the San Pedro Formation which crops out along the	East/Southeast: Yes, O				re groundwa
					re groundwa
asin. Surface flow percolation from Santa Clara River and, percolation of lirect precipitation into the San Pedro Formation which crops out along the northern edge of the subbasin. (DWR, 2006) Imported State Project Water via	East/Southeast: Yes, O				re groundwa
asin. Surface flow percolation from Santa Clara River and, percolation of lirect precipitation into the San Pedro Formation which crops out along the orthern edge of the subbasin. (DWR, 2006) Imported State Project Water via ake Piru release to Santa Clara River. <u>Potable Water Sources</u> Groundwater from Mound Basin, Ventura River Basin, Oxnard Plain Pressure Basin via Ventura Water System. Surface water from Ventura River diversion ia Ventura Water System. Surface water from Lake Casitas via Casitas	East/Southeast: Yes, O basins. Flow into and or	ut of basin de	bendent on ground		re groundwa
Aasin. Surface flow percolation from Santa Clara River and, percolation of lirect precipitation into the San Pedro Formation which crops out along the orthern edge of the subbasin. (DWR, 2006) Imported State Project Water via ake Piru release to Santa Clara River. Potable Water Sources Groundwater from Mound Basin, Ventura River Basin, Oxnard Plain Pressure Basin via Ventura Water System. Surface water from Ventura River diversion ia Ventura Water System. Surface water from Lake Casitas via Casitas <i>J</i> unicipal Water District to Ventura Water System.	East/Southeast: Yes, O basins. Flow into and or Basin Prioritization Le	ut of basin de vel - Mediur	pendent on ground		re groundwa

Ojai Valley Basin			
Groundwater Basin Surface Area:	: 6,851 Acres (DWR, 2014)		
Irrigated Acreage:	≈2,135 (estimate determined from Ventura County Ag Commissioner's data)		
Watershed:	Ventura River		
Aquifers:	Unconfined and confined aquifers		
DWR Groundwater Basin Designation:			
SGMA Basin Priority:	High		
DWR Groundwater Basin Population:	7,745 (2010)		
Known Water Supply Wells (as of July 2021)	2020 Self Reported Groundwater	Water Demand Estimate	
Number of Wells: 325	Extractions to OBGMA		
Active: 189	(as of May 13, 2021)	Irrigation Demand @ 2 AF/Ac:4,270 AF/Yr	
Destroyed: 76			
Abandoned: 11	Extractions: 4,638 Af/Yr	Municipal Demand @ 0.5AF/person/Yr: 4,134	
Can't Locate: 48		AF/Yr	
Non Compliant: 1		Total Demand Estimate: 8,404 AF/Yr	
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County		
		(14 wells)	
"Key" well 04N22W05L08S: - The December reading was down 48.7 feet from		bicarbonate type, five wells are calcium sulfate	
the March level.	21	nate type, and one is calcium chloride type.	
	Primary MCL Exceedances for Nitrate	o ,	
In general, for 17 wells consistently measured in 2020 in the basin, water levels			
declined in 14 wells and rose in 3 wells over the course of the year from the 1st			
quarter reading to the last quarter reading.	Secondary MCL Exceedances for Su		
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020		
	SWN Nitrate	Chloride TDS Sulfate	
"Key" well 04N22W05L08S: 🔶	04N23W01K02S 🗸 📕		
	05N22W33J01S	i i	
	04N22W04Q01S	i i	
In general, for 15 wells consistently measured: (15 wells)	04N23W12B03S		
	Wells are located in various areas of		
Sources of Groundwater Recharge		nection to Other Groundwater Basins	
Basin Recharge:infiltration of precipitation on the valley floor, and percolation of	Upgradient: No		
surface waters through alluvial channels. (DWR, 2006)			
		ed by Thacher and San Antonio Creeks to the	
	Ventura River. (DWR, 2006)		
Potable Water Sources			
Groundwater from Ojai Valley Basin. Surface water from Lake Casitas via			
Casitas Municipal Water District to various water purveyors.			
	Basin Prioritization Level - Medium		
Impact Comments: High nitrates and sulfates reported in	the basin. Medium to high levels of nit	rates reported in the basin	
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	➡ Level trending up Leve	I Trending down 🛛 📕	
	, , , , , , , , , , , , , , , , , , , ,	• •	

Oxnard Subbasin

DWR Groundwater Basin Designation and Size:	Santa Clara River Valley Basin, Oxnard Subbasin (4-4.02) Surface area 57,642 Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR, 2014)
Irrigated Acreage:	≈21,540 (estimate determined from Ventura County Ag Commissioner's data)
	Santa Clara River and Calleguas Creek
	Unconfined and confined aquifers
•	
SGMA Basin Priority:	
DWR Groundwater Basin Population:	237,466 (2010)
Known Water Supply Wells (as of July 2021)	2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021)
Number of Wells: 1,182	Agricultural Extractions: 27,739 AF/Yr
Active: 461	Agricultural Extractions. 21,700 Al / Th
Destroyed: 541	
Abandoned: 77	Municipal, Industrial, and Domestic Extractions: 19,936 AF/Yr
Exempted: 1	Municipal, industrial, and Domestic Extractions. 19,900 Al / T
Can't Locate: 98	
Non-Compliant: 4	Total: 47,675 AF/Yr
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County
UAS "Key" well 01N21W07H01S - December level was down 3.75 feet from	(53 wells)
the March measurement.	
	UAS - The water in the UAS is best classified as a calcium sulfate type.
	LAS - Six water samples are sodium sulfate type, four samples are sodium
LAS "Key" well 01N21W32K01S - December level was down 18.3 feet from the	bicarbonate type, and the remainder are calcium sulfate type.
January measurement.	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 4 wells
	Secondary MCL Exceedances for Chloride >250mg/L Yes, 1 wells
In general, for 23 wells consistently measured in 2020 in the basin, water levels	
declined in 21 wells and rose in 2 wells over the course of the year from the 1st	
quarter reading to the last guarter reading.	Secondary MCL Exceedances for Suitate >250mg/L! res, 45 wens
	5 Veen Oreun duraten Ouelitu Trend 2010 2020
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020
	Upper System
UAS "Key" well 01N21W07H01S: 1	SWN <u>Nitrate Chloride TDS</u> Sulfate
	01N22W03F07S
LAS "Key" well 01N21W32K01S: 1	01N22W06R02S 🖊 🚹 🕇 🖊
Upper System	Lower System
The 5 year trend based on 2016 through 2020 groundwater level elevations is	SWN Nitrate Chloride TDS Sulfate
mostly upward with only one well trending downward.	01N21W08R01S
······································	01N21W28D01S 🛋 🖡 🖡
Lower System	01N22W03F05S 🔶 📫 📫
The 5 year trend based on 2016 through 2020 groundwater level elevations is	01N22W24B04S 📫 📫
upward.	02N21W20Q05S 📫 🕇 📕 📕
	02N22W36E02S 🛉 🛋 🛶
	— · · · · · · · · · · · · · · · · · · ·
	For upper system, both wells are in the northwest. For lower system the wells are
	generally in the center of the basin along a northeast to southwest line, and a small
	group in the southeast.
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins
Basin Recharge:percolation of surface flow from the Santa Clara River, into the	North: Oxnard Forebay basin, Mound basin
Oxnard Forebay; precipitation and floodwater from the Calleguas Creek	
drainage percolate into the unconfined gravels near Mugu Lagoon. Some	East/Northeast: Pleasant Valley basin, West Las Posas basin
underflow may come from the Las Posas and Pleasant Valley Basins on the	Lastriorancast. 1 Icasant Valicy Dasin, VYCSL Las FUSAS Dasin
east. Flow into and out of Mound basin dependent on water levels. (DWR,	
2006). Imported State Water Project water via Lake Piru release to Santa Clara	
River	
Potable Water Sources	
Groundwater from Oxnard Plain Pressure Basin via various purveyors.	
Groundwater from Oxnard Forebay basin via United Water system. Surface	
water from Santa Clara River via United Water System. Imported State Water	
Project water from Calleguas MWD to various water purveyors.	
	r Basin Prioritization Level - High
	les, and PCBs have impacted some water wells per (B-118)
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	
	·

Oxnard Subbasin Forebay Management Area

Watershed: Aquifers: DWR Groundwater Basin Designation and Size: SGMA Basin Priority:	≈1,797 (estimate determined from Ventura County Ag Commissioner's data) Santa Clara River Unconfined and confined Santa Clara River Valley Basin, Oxnard Subbasin (4-4.02) Surface area 57,642 Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR, 2014)
Watershed: Aquifers: DWR Groundwater Basin Designation and Size: SGMA Basin Priority: DWR Groundwater Basin Population: <u>Known Water Supply Wells (as of July 2021)</u> Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 <u>2020 Groundwater Levels in General for Wells Gauged by County and UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Santa Clara River Unconfined and confined Santa Clara River Valley Basin, Oxnard Subbasin (4-4.02) Surface area 57,642 Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR 2014) High 237,466 (2010) 2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
Watershed: Aquifers: DWR Groundwater Basin Designation and Size: SGMA Basin Priority: DWR Groundwater Basin Population: <u>Known Water Supply Wells (as of July 2021)</u> Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 <u>2020 Groundwater Levels in General for Wells Gauged by County and UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Santa Clara River Unconfined and confined Santa Clara River Valley Basin, Oxnard Subbasin (4-4.02) Surface area 57,642 Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR 2014) High 237,466 (2010) 2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
Aquifers: DWR Groundwater Basin Designation and Size: SGMA Basin Priority: DWR Groundwater Basin Population: Mumber of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Unconfined and confined Santa Clara River Valley Basin, Oxnard Subbasin (4-4.02) Surface area 57,642 Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR 2014) High 237,466 (2010) 2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
DWR Groundwater Basin Designation and Size: SGMA Basin Priority: DWR Groundwater Basin Population: MR Groundwater Basin Population: Mumber of Wells (as of July 2021) Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Santa Clara River Valley Basin, Oxnard Subbasin (4-4.02) Surface area 57,642 Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR 2014) High 237,466 (2010) 2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
SGMA Basin Priority: DWR Groundwater Basin Population: <u>Known Water Supply Wells (as of July 2021)</u> Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> 'Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Acres. Note: DWR groups two County basins into Oxnard Subbasin (4-4.02) (DWR 2014) High 237,466 (2010) 2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
SGMA Basin Priority: DWR Groundwater Basin Population: Known Water Supply Wells (as of July 2021) Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> 'Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	2014) High 237,466 (2010) 2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
SGMA Basin Priority: DWR Groundwater Basin Population: Known Water Supply Wells (as of July 2021) Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	High 237,466 (2010) 2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
DWR Groundwater Basin Population: Known Water Supply Wells (as of July 2021) Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	237,466 (2010) 2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
Known Water Supply Wells (as of July 2021) Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 2021 Agricultural Extractions: 4,482 AF/Yr
Number of Wells: 281 Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and UWCD "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Agricultural Extractions: 4,482 AF/Yr
Active: 100 Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	
Destroyed: 136 Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Municipal, Industrial, and Domestic Extractions: 9,528 AF/Yr
Abandoned: 16 Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Municipal, Industrial, and Domestic Extractions: 9,528 AF/Yr
Can't Locate: 28 Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	
Non-Compliant: 1 2020 Groundwater Levels in General for Wells Gauged by County and <u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	
2020 Groundwater Levels in General for Wells Gauged by County and UWCD "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	Total: 14,010 AF/yr
<u>UWCD</u> "Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	2020 Groundwater Quality in General for All Wells Sampled by County
"Key" well 02N22W12R04S - (Oxnard Aquifer) - Note: Measurements from UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	(4 wells)
UWCD. Level decreased 16.6 feet from the January measurement to the December measurement.	(4 Weiis)
December measurement.	All samples are calcium sulfate type.
5 Year Groundwater Level Trend 2016 - 2020	Primary MCL Exceedances for Nitrate >45mg/l? Yes, 1 well
5 Year Groundwater Level Trend 2016 - 2020	Secondary MCL Excedances for Chloride >250mg/l? No
5 Year Groundwater Level Trend 2016 - 2020	Secondary MCL Excedances for TDS >500mg/l? Yes, 4 wells
5 Year Groundwater Level Trend 2016 - 2020	Secondary MCL Excedances for Sulfate >250mg/l? Yes, 4 wells
	5 Year Groundwater Quality Trend 2016-2020
	<u>Upper System</u> (Includes wells sampled by other agencies)
"Key" well 02N22W12R04S: 👕	SWN Nitrate Chloride TDS Sulfate
	02N22W23B02S 📕 📕 📕
Upper System 1	02N22W23G03S
	02N22W11J01S
The 5 year trend based on 2016 through 2020 groundwater level elevations is	
upward.	
Lower System 1	Lower System
The 5 year trend based on 2015 through 2019 groundwater level elevations is	SWN <u>Nitrate Chloride TDS</u> Sulfate
upward.	02N22W13N02S 📫 📫 🖡
	02N22W23H04S 🛋 🖡 🖡
	02N22W26B03S 📥 🏜 🖡
	Wells are located in the southeast portion of the basin.
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins
Basin Recharge: percolation of surface flow from the Santa Clara River and,	Upgradient: Yes, Santa Paula groundwater basin to the northwest and Oxnard Plain
some subsurface flow from Santa Paula Subbasin makes its way over or	groundwater basin to the east and south.
across the Oak Ridge fault. Some amount of irrigation return also occurs	groundwater basin to the cast and south.
(DWR, 2006) Imported State Project Water via Lake Piru release to Santa	
Clara River.	Developed light Vac Meural exercision in the the acuthurset Original Disis
	Downgradient: Yes, Mound groundwater basin to the southwest. Oxnard Plain Pressure groundwater basin to the south and southwest. Flow into and out of Mound
Potable Water Sources Groundwater from Oxnard Plain Forebay basin. Surface water from Santa	
Clara River diversion via United Water Conservation District. Groundwater from	
Oxnard Plain Pressure basin via Oxnard Water System. Imported State Project	
Water from Calleguas MWD via Oxnard Water System.	
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	

Pleasant Valley Basin

DWR Groundwater Basin Designation and Size:	Pleasant Valley Basin (4-6). Surface area 19,838 acres. (DWR, 2014)		
Groundwater Basin Surface Area:	: 20,267 acres		
Irrigated Acreage:	≈7,980 (estimate determined from Ventura County Ag Commissioner's data)		
	: Calleguas Creek		
	Unconfined and confined aquifers		
SGMA Basin Priority:			
DWR Groundwater Basin Population:			
Known Water Supply Wells (as of July 2021)	2020 Self Reported Groundwater Extraction to FCGMA (as of August 19, 202		
Number of Wells: 347	2020 Sell Reported Groundwater Extraction to FCGMA (as of August 13, 202		
Active: 85	Agricultural Extractions: 4,553 AF/Yr		
Destroyed: 183			
Abandoned: 28	Municipal, Industrial, and Domestic Extractions: 3,799 AF/Yr		
Can't Locate: 46			
Non-Compliant: 5	Total: 8,352 AF/Yr		
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County		
2020 Groundwater Levels in General for Air Weils Gauged by County	(20 wells)		
Key" well 01N21W03C01S - December level was down 12.1 feet from the	The water in one sample is sodium chloride, four samples are sodium sulfate, thre		
anuary measurement.	samples are sodium bicarbonate type and the remainder are calcium sulfate type		
anuary measurement.	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 5 wells		
n general, for 10 wells consistently measured in 2020 in the basin, water levels	3		
leclined in 9 wells and rose in one well over the course of the year from the 1st			
juarter reading to the last quarter reading.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 15 wells		
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020		
5 Tear Groundwater Lever Menu 2010 - 2020			
	Upper System		
Key" well 01N21W03C01S: 1	SWN Nitrate Chloride TDS Sulfate		
	01N21W12D01S 👢 🕇 🕇		
	01N21W10A02S		
Jpper System	Lower System		
Spher Oystem			
	SWN Nitrate Chloride TDS Sulfate		
he 5 year trend is up with 4 wells increasing.	01N21W03K01S 🗭 🕂 🕇		
ower System	01N21W03R01S 🕇 🦊 🕇 🕇		
he 5 year trend is mixed with 1 well declining and 5 wells showing an	01N21W10G01S 1 1 1		
ncreasing trend.	01N21W15D02S 🛉 🛉 🛉		
	02N21W34G01S		
	One well is in the north central portion, the remaining are in the southwest.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: dominantly from subsurface flow across the Springville fault	West: Yes, Oxnard Plain Pressure Basin.		
cone. A modest amount of irrigation water and septic system effluent also			
contribute to basin recharge. (DWR, 2006)	East: No.		
Potable Water Sources			
	a		
Groundwater from Pleasant Valley Basin, groundwater from Arroyo Santa Rosa			
basin via Camrosa Water District. Imported State Water Project water from			
pasin via Camrosa Water District. Imported State Water Project water from Calleguas Municipal Water District to various water purveyors.			
basin via Camrosa Water District. Imported State Water Project water from Calleguas Municipal Water District to various water purveyors. <u>DWR CASGEM Groundwate</u>	er Basin Prioritization Level - High		
basin via Camrosa Water District. Imported State Water Project water from Calleguas Municipal Water District to various water purveyors. <u>DWR CASGEM Groundwate</u> Impact Comments: PC - Discharge of poor quality GW from dewatering wells a	and effluent discharge from the wastewater treatment facility into the Arroyo Simi ha		
asin via Camrosa Water District. Imported State Water Project water from Calleguas Municipal Water District to various water purveyors. <u>DWR CASGEM Groundwate</u> Impact Comments: PC - Discharge of poor quality GW from dewatering wells a			

Piru Subbasin

Groundwater Basin Surface Area:	10,896 acres		
Irrigated Acreage:	≈5,600 (estimate determined from Ventura County Ag Commissioner's data)		
	Santa Clara River		
	Unconfined Aquifer		
	Santa Clara River Valley Basin, Piru Subbasin (4-4.06). Surface area 10,896 acres.		
DWR Gloundwaler Dasin Designation and Size.	(DWR, 2014)		
SGMA Basin Priority:	High		
DWR Groundwater Basin Population:	2,744 (2010)		
Known Water Supply Wells (as of July 2021)	2020 Self Reported Groundwater Extraction to UWCD (as of July 19, 2021)		
Number of Wells: 190	Agricultural Extractions: 11,636 AF/Yr		
Active: 149	Agricultural Extractions. 11,050 AF/ 11		
Destroyed: 23	Municipal Extractions: 492 AF/Yr		
Abandoned: 4	Municipal Extractions. 492 AP/11		
Can't Locate: 12	Total Extractions: 12,128 AF/Yr		
Non-Compliant: 2			
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County		
"Key" well 04N19W25C02S - December level was up 3.9 feet from the March	(6 wells)		
measurement.	Piru basin groundwater is mainly calcium sulfate type.		
	Primary MCL Exceedances for Nitrate >45mg/L? No		
In general, for 3 wells consistently measured in 2020 in the basin, water levels	Secondary MCL Exceedances for Chloride >250mg/L? No		
rose in all 3 wells over the course of the year from the 1st quarter reading to the	Secondary MCL Exceedances for TDS >500mg/L? Yes, 6 wells		
last quarter reading.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 5 wells		
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020		
	(* sampled by UWCD)		
"Key" well 04N19W25C02S:	SWN Nitrate Chloride TDS Sulfate		
Key well 041119W25C025.	04N18W30J04S 🖡 🖡 🖊		
	04N19W26H01S 🕇 🔿 🚽		
	04N19W34J04S		
The 5 year trend based on 2016 through 2020 groundwater level elevations is			
mixed with 6 wells showing an upward trend and 1 well showing a downward			
trend.	04N18W20R01S*		
	04N18W27B01S*		
	04N18W20M03S* 🕇 📫 🖛		
	The wells are in the north central portion of the basin.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: Infiltration of precipitation. Subsurface flow from East basin.	Upgradient: Yes, East groundwater basin.		
Surface flow percolation from Santa Clara River, Piru Creek and Hopper Creek	Downgradient: Yes, Fillmore groundwater basin.		
DWR, 2006) Imported State Water Project water via Lake Piru release to			
Santa Clara River and percolation ponds.			
DWR CASGEM Groundwat	er Basin Prioritization Level - High		
	tanks, etc. (B-118). High Selenium and other inorganics, average TDS was 1450 mg/l 2011 annual gw report)		
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	🗅 Level trending up 🕇 Level Trending down 🖶		
sroundwater quality i rend Notes. Trend is relatively flat, of no clear trend			

Santa Paula Subbasin

Groundwater Basin Surface Area:	22 110 acres		
	≈9,100 acres (estimate determined from Ventura County Ag Commissioner's data)		
	Santa Clara River		
	Unconfined Aquifer		
	Santa Clara River Valley Basin, Santa Paula Subbasin (4-4.04) Surface area 22,110		
	Acres. (DWR, 2014)		
SGMA Basin Priority:	Very Low		
DWR Groundwater Basin Population:	47,755 (2010)		
Known Water Supply Wells (as of July 2021)	2020 Self Reported Groundwater Extraction to UWCD (as of July 19, 2021)		
Number of Wells: 294	Agricultural Extractions: 14,199 AF/Yr		
Active: 153	Agricultural Extractions. 14, 199 AF/ 11		
Destroyed: 81	Municipal & Industrial Extractions: 7,084 AF/Yr		
Abandoned: 10			
Exempted: 1			
Can't Locate: 49	Total Extractions: 21,283 AF/Yr		
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County		
"Key" well 03N22W36K05S - December level was down 15.7 feet from the	(8 wells)		
March measurement.	The water type for all samples is calcium sulfate type.		
	Primary MCL Exceedances for Nitrate >45mg/L? No		
In general, for 5 wells measured in 2020 in the basin, water levels declined in 4	Secondary MCL Exceedances for Chloride >250mg/L?No		
wells and rose in 1 well over the course of the year from the 1st guarter reading	Secondary MCL Exceedances for TDS >500mg/L? Yes, 8 wells		
to the last quarter reading.	Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 8 wells		
5 Year Groundwater Level Trend 2016 - 2020	5 Year Groundwater Quality Trend 2016-2020		
	(Based on 3 wells sampled by VCWPD and 2 wells sampled by other agencies*)		
"Key" well 02N22W02C01S: 👚	SWN Nitrate Chloride TDS Sulfate		
	03N21W09K04S 🔿 🚽 📕		
	03N21W17Q01S		
The 5 year trend based on 2016 through 2020 groundwater level elevations is			
mixed with most wells showing an upward trend.			
	One well is in the southwest portion of the basin and 4 wells are in the northeast end		
	of the basin.		
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins		
Basin Recharge: Infiltration of precipitation. Subsurface flow from Fillmore	Upgradient: Yes, Fillmore groundwater basin.		
has a Curfese flow association from Conte Clare Diver and Conte Device Creek			
basin. Surface flow percolation from Santa Clara River, and Santa Paula Creek			
(DWR, 2006) Imported State Water Project water via Lake Piru release to			
(DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River.			
(DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u>			
(DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u> Groundwater from Santa Paula Basin	Downgradient: Yes, Mound and Oxnard Plain Forebay groundwater basins		
(DWR, 2006) Imported State Water Project water via Lake Piru release to Santa Clara River. <u>Potable Water Sources</u> <u>Groundwater from Santa Paula Basin</u> <u>DWR CASGEM Groundwater</u>			

Tierra Rejada Basin

-					
Groundwater Basin Surface Area:					
Irrigated Acreage:	≈450 (estimate determined from Ventura County Ag Commissioner's data)				
Watershed:	Calleguas Creek				
Aquifers:	Unconfined Aquifer				
DWR Groundwater Basin Designation:	Tierra Rejada (4-15)				
SGMA Basin Priority:					
DWR Groundwater Basin Population:					
Known Water Supply Wells (as of July 2021)	Water Demand Estimate				
Number of Wells: 58	Irrigation Demand @ 2 AF/Ac: 900 AF/Yr				
Active: 36	3				
Destroyed: 9	Municipal Demand @ 0.5AF/person/Yr: 1,834 AF/Yr				
Abandoned: 1					
Can't Locate: 12	Total Demand Estimate: 2,734 AF/Yr				
2020 Groundwater Levels in General for All Wells Gauged by County	2020 Groundwater Quality in General for All Wells Sampled by County				
No key well is in this basin.	(6 wells)				
In general, for 2 wells measured in each quarter of 2020 in the basin, water levels increased in one well and decreased in one well from the 1st quarter	All six water samples are magnesium bicarbonate type.				
reading to the last quarter reading in one well and declined in the other.	Primary MCL Exceedances for Nitrate >45mg/L? Yes, 1 well				
reading to the last quarter reading in one well and declined in the other.	Secondary MCL Exceedances for Chloride > 500mg/L? Secondary MCL Exceedances for TDS >500mg/L? Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 6 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well				
5 Year Groundwater Level Trend 2016 - 2020					
	5 Year Groundwater Quality Trend 2016-2020				
	02N19W10R02S				
In general for 2 wells consistently measured: (2 wells)					
	02N19W11J03S				
	02N19W14F01S 1 1				
	02N19W15J02S 🖡 🕇 🕇				
	Wells are in various locations in the basin.				
Sources of Groundwater Recharge	Subsurface Hydrologic Connection to Other Groundwater Basins				
Basin Recharge: Percolation of rainfall to the valley floor, stream flow, and	Upgradient: No				
irrigation return.(DWR, 2006)					
	Downgradient: Yes, some subsurface flow into Arroyo Santa Rosa basin.				
Potable Water Sources					
Groundwater from Tierra Rejada Basin, Arroyo Santa Rosa Basin via Camrosa					
Water District. State Water Project water from Calleguas Municipal Water District via Camrosa Water District.					
	Deska Beterktesten Land. Manufan				
DWR CASGEM Groundwater Basin Prioritization Level - Very Low Impact Comments: Locally high nitrates documented in the basin (B-118).					
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending up Level Trending down				

Upper Ventura River Subbasin

Primary MCL Exceedances for Nitrate >45mg/r No vells and rose in 3 wells over the course of the year from the 1st quarter eading. Primary MCL Exceedances for Chloride >250mg/L? No Secondary MCL Exceedances for Sulfate >250mg/L? No Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Stear Groundwater Level Trend 2016 - 2020 (*sampled by other agency) Key* well 04N23W 16C04S: • n general for 12 wells consistently measured: (3 wells) (8 wells) (1 well) • • Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins Vup percolation of rainfall to the valuey floor and excess irrigation water. (DWR, 006) Downgradient: No. Over Casitas MWD to various water proveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118) —								
Watersheit Ventura River Auplifers: Unconfined Aquifer DWR Groundwater Basin Designation: Ventura River Valley Basin, Upper Ventura River Subbasin (4-3.01) SGMA Basin Priority: Medium DWR Groundwater Basin Deputation: 10.307 (2010) Known Water Supply Wells (26 of July 2021) 10.307 (2010) Number of Wells: 202 Active: 117 Destroyed: 35 Municipal Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Joandoned: 16 Cant Locate: 31 Non-Compliant: 3 Total Demand @ 0.5AF/person/Yr: 7,980 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) The water in one sample is calcium bicatbonate, and two samples are calcium suffate pipe. Nage and reading the basin, water levels declined in 7 Secondary MCL Exceedances for Nurstee +43mg/12 No Secondary MCL Exceedances for Suffate pipe. Nor-Somplia: Secondary MCL Exceedances for Suffate -250mg/12 Yes, 3 wells Secondary MCL Exceedances for Suffate - 250mg/12 Yes, 3 wells Secondary MCL Exceedances for Suffate -250mg/12 Yes, 3 wells Secondary MCL Exceedances for Value -250mg/12 Yes, 3 wells Secondary MCL Exceedances for Suffate -250mg/12 Yes, 3 wells Secondary MCL Exceedances for Suffate -250mg/12 Yes,	Groundwater Basin Surface Area:	7,430 Acres. (DWR, 2	2014)					
Aquifers DWR Groundwater Basin Designation: Unconfined Aquifer Ventura River Valley Basin, Upper Ventura River Subbasin (4-3.01) SGMA Basin Priority: DWR Groundwater Basin Population: Ventura River Valley Basin, Upper Ventura River Subbasin (4-3.01) Marker Supply Wells (as of July 2021) Number of Wolls: 202 Active: 117 Destroyed: 35 Abandoned:: 16 Carl Locate: 31 Non-Compliant: 3 Inconfined Aquifer 2020 Groundwater Levels in General for All Wells Sauged by County (3 wells) Total Demand @ 0.5AF/person/Yr: 7,980 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (all basin, water levels declined in Non-Compliant: 3 Total Demand @ 1.5AF/person/Yr: 7,980 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (all bandoned: 16 Carl Locate: 31 Non-Compliant: 3 Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (all basin, water levels declined in Secondary MCL Exceedances for Nitrate -Stomg/L?) No Secondary MCL Exceedances for Nitrate -Stomg/L? No Secondary MCL Exceedances for Sulfate >250mg/L? N	Irrigated Acreage:	≈1,206 (estimate determined from Ventura County Ag Commissioner's data)						
DWR Groundwater Basin Designation: Ventura River Valley Basin, Upper Ventura River Subbasin (4-3.01) SGMA Basin Priority: Medium DWR Groundwater Basin Population: 10.307 (2010) Known Water Suppy Weils (as July 2021) Water Demand @ 2 AF/Ac: 2,412 AF/Yr Number of Weils: 2002 Irrigation Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Destroyed: 35 Abandoned: 16 Carit Locate: 31 Non-Complent: 3 Non-Complent: 3 Non-Complent: 3 Non-Complent: 3 Total Demand @ 0.5AF/person/Yr: 7,980 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) Output (3 wells) Key' well 04N23W16C04S - December level was down 8.3 feet from the farch measurement. Stear from the 1st quarter suffate type. No Sample a by County (3 wells) Stear Groundwater Level Trend 2016 - 2020 (vell 04N23W16C04S: 1 Stear Groundwater Cuelly Trend 2016 - 2020 (rsampled by other agency) No Stear Groundwater Level Trend 2016 - 2020 (vell 04N23W16C04S: 1 Nitrate (04N23W09G03S (03N23W09G02S') Yeer Connection to Other Groundwater Basins (3 N23W09G02S') Stear Chloride TDS Suffate (sampled by other agency) Suffate (vells in the north and 2 wells are in the south portion of the basin. Surges of Groundwater Sourge: (sampled by other agency) Suffate (sampled by other agency) Suffate (sampled by other agency) Surges of Groundwater Meter Sourge (sampled by other agency) <	Watershed:	Ventura River						
DWR Groundwater Basin Designation: Ventura River Valley Basin, Upper Ventura River Subbasin (4-3.01) SGMA Basin Priority: Medium DWR Groundwater Basin Population: 10.307 (2010) Known Water Suppy Weils (as July 2021) Water Demand @ 2 AF/Ac: 2,412 AF/Yr Number of Weils: Weils: Prioritization Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Destroyed: 35 Abandoned: 16 2020 Groundwater (10.302 AF/Yr Car'l Locate: 211 Car'l Locate: 2020 Groundwater (2018) in General for All Wells Sampled by County Key' well 04N23W16C04S - December level was down 8.3 feet from the farch measurement. 2020 Groundwater (2018) in General for All Wells Sampled by County No Secondary MCL Exceedances for Chloride >250mgL7 Ves.1 wells No Secondary MCL Exceedances for Chloride >250mgL7 Ves.1 wells Secondary MCL Exceedances for Chloride >250mgL7 Ves.1 wells Secondary MCL Exceedances for Chloride >250mgL7 Ves.1 wells Surface Secondary MCL Exceedances for Chloride >250mgL7 Ves.1 wells Surface Surface Surface Secondary MCL Exceedances for Chloride >250mgL7 Ves.1 wells Surface Surface Surface Key' well 04N23W16C04S: Impact Sommet Vertura River and, to a lesser extent, 0/3023W05P02S^2 Impact Sommet Vertura River Bas	Aquifers:	Unconfined Aquifer						
SGMA Basin Prioritiz: DWR Groundwater Basin Population: 10,307 (2010) Water Demand Estimate Know Meet Suppy Wells (as of July 2021) Kater Suppy Wells (as of July 2021) Vater Demand @ 2 AF/Ac: 2.412 AF/Yr Number of Wells: 2023: Active: 117 Bastroyet: 35 Abandoned: 16 Carl Locate: 31 Anot-Compliant: 3 Municipal Demand @ 2 AF/Ac: 2.412 AF/Yr Approximation of the demand in the demand								
UNR Groundwater Basin Population: 10,307 (2010) Known Water Supply Wells (as of July 2021) Number of Wells: 202 Active: 117 Destroyet: 35 Abandoned: 16 Carit Locate: 31 Non-Compliant: 3 Irigation Demand @ 2 AF/Ac: 2,412 AF/Y Municipal Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Zoto Groundwater Levels in General for All Wells Gauged by County Active: 31 Non-Compliant: 3 Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County Actor measurement. n general, for wells measured in 2020 in the basin, water levels declined in 7 Nells and rose in 3 wells over the course of the year from the 1st quarter eading to the last quarter reading. 2202 Groundwater Stro Mirate >45mg/l? No Secondary MCL Exceedances for Nurate >45mg/l? No Secondary MCL Exceedances for Sufate >250mg/L? Yes, 3 wells Secondary MCL Exceedances for Sufate >25	DWA Orodinawater Basin Besignation.							
UNR Groundwater Basin Population: 10,307 (2010) Known Water Supply Wells (as of July 2021) Number of Wells: 202 Active: 117 Destroyet: 35 Abandoned: 16 Carit Locate: 31 Non-Compliant: 3 Irigation Demand @ 2 AF/Ac: 2,412 AF/Y Municipal Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Zoto Groundwater Levels in General for All Wells Gauged by County Active: 31 Non-Compliant: 3 Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County Actor measurement. n general, for wells measured in 2020 in the basin, water levels declined in 7 Nells and rose in 3 wells over the course of the year from the 1st quarter eading to the last quarter reading. 2202 Groundwater Stro Mirate >45mg/l? No Secondary MCL Exceedances for Nurate >45mg/l? No Secondary MCL Exceedances for Sufate >250mg/L? Yes, 3 wells Secondary MCL Exceedances for Sufate >25	SCMA Pasin Brierity	Modium						
Water Demand Estimate Water Demand Estimate Number of Wells: 202 Active: 17 Destroyed: 35 Abandoned: 16 Can't Locate: 31 Non-Compliant: 3 2020 Groundwater Levels in General for All Wells Gauged by County Municipal Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) Non-Compliant: 3 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) Municipal Demand @ 2 AF/Ac: 2,412 AF/Yr Municipal Demand @ 0.5AF/person/Yr: 7,980 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) Mone Complete is calcium bicatronate, and two samples are calcium satisfies type. No Secondary MCL Exceedances for Tolords = 250mgL? Two Secondary MCL Exceedances for Sulfate > 250mgL? Two Secondary MCL Exceedances for Sulfate > 250mgL? Two <th col<="" th=""><th></th><th colspan="6"></th></th>	<th></th> <th colspan="6"></th>							
Number of Wells: 202 Active: 117 Destroyed: 35 Abandoned: 16 Cant Locate: 31 Non-Compliant: 3 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) Total Demand @ 0.5AF/person/Yr: 7,980 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (and the surger of the search measurement. Total Demand Estimate: 10,392 AF/Yr 9020 Groundwater Levels in General for All Wells Gauged by County (and the surger of the search measurement. Total Demand Estimate: 10,392 AF/Yr 9020 Groundwater Levels in General for All Wells Gauged by County (and the surger of the search measurement. Suffact Participation Dicarbonate, and two samples are calcium suffate type. Primary MCL Exceedances for Nitrate >45mg/l? No Secondary MCL Exceedances for TDS >500mg/L? Yes, 3 wells Secondary MCL Exceedances for TDS >500mg/L? Key" well 04N23W16C04S: 1 wells No general for 12 wells consistently measured: (3 wells) (1 well) No Surger Groundwater Recharge Basin Recharge: percolation of flow in the Ventura River and, to a lesser extent, 006) Nitrate Chloride TDS Subsurface Hydrologic Connection to Other Groundwater Basins Subsurface Hydrologic Connection to Other Groundwater Basins Downgradient: No. Downgradient: No. Subsurface Hydrologic Connection to Other Groundwater Basin.								
Active: 117 Destroyed: 35 Abandoned: 16 Can't Locate: 31 Non-Compliant: 3 Total Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Total Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Total Demand @ 0.5AF/person/Yr: 7,980 AF/Yr Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Quality in General for All Wells Sampled by County (3 wells) The water in one sample is calcium bicarbonate, and two samples are calcium suffate type. Primary MCL Exceedances for Nitrate > 456mg/12 No Secondary MCL Exceedances for Chloride > 2500mg/L? No Secondary MCL Exceedances for USE > 5000mg/L? No Secondary MCL Exceedanc								
Destroyed: 35 Abandoned: 16 Can't Locat: 31 Non-Compliant: 3 Municipal Demand @ 0.5AF/person/Yr: 7,980 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) Total Demand Estimate: 10.392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County (3 wells) (3 wells) Key' well 04N23W16C04S - December level was down 8.3 feet from the farch measurement. The water in one sample is calcium bicarbonate, and two samples are calcium sulfate type. n general, for wells measured in 2020 in the basin, water levels declined in relis and rose in 3 wells over the course of the year from the 1st quarter eading to the last quarter reading. No 5 Year Groundwater Level Trend 2016 - 2020 ('sampled by other agency) Yes, 3 wells Secondary MCL Exceedances for TDS StomgL? ('sampled by other agency) No Key' well 04N23W16C04S: 1 wells (1 well) Sulfate 04N23W09G03S 03N23W09C02S* Imagency Imagency Sulfate wells is in the north and 2 wells are in the south portion of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins 03N23W08C02S* Imagenci to the courts of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins 03N23W08C02S* Subsurface Hydrologic Connection to Other Groundwater Basins 03N23W08C02S*		ingalion Bonnana O i						
Abandoned: 16 Can't Locate: 31 Non-Compliant: 3 Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County Key* well 04N23W 16C04S - December level was down 8.3 feet from the farch measurement. 2020 Groundwater Quality in General for All Wells Sampled by County (3 wells) The water in one sample is calcium bicarbonate, and two samples are calcium sulfate type. No Primary MCL Exceedances for Nitrate >45mg/? No Secondary MCL Exceedances for Choride >250mg/L? No Secondary MCL Exceedances for Sulfate >250mg/L? No Secondary MCL Exceedances for Sulfate >250mg/L? No Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Nitrate >430mg/L? Yes, 1 well		Municipal Demand @ 0.5AE/person/Vr: 7.080 AE/Vr						
Can't Locate: 31 Non-Compliant: 3 Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County Key" well 04N23W 16C04S - December level was down 8.3 feet from the fach measurement. 2020 Groundwater Quality in General for All Wells Sampled by County (3 wells) More than a surger of the seasure of in 2020 in the basin, water levels declined in 7 vells and rose in 3 wells over the course of the year from the 1st quarter eading to the last quarter reading. No Secondary MCL Exceedances for Nitrate >45mg/l? No Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Nitrate >45mg/l? No Name the secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1	3							
Non-Compliant: 3 Total Demand Estimate: 10,392 AF/Yr 2020 Groundwater Levels in General for All Wells Gauged by County Key* well 04N23W16C04S - December level was down 8.3 feet from the farch measurement. 2020 Groundwater Quality in General for All Wells Sampled by County (3 wells) In general, for wells measured in 2020 in the basin, water levels declined in general, for wells measured in 2020 in the basin, water levels declined in a general, for wells measured in 2020 in the basin, water levels declined in general, for wells measured in 2020 in the basin, water levels declined in a general for 12 wells consistently measured: (3 wells) in general for 12 w								
2020 Groundwater Levels in General for All Wells Sauged by County (3 wells) 2020 Groundwater Quality in General for All Wells Sampled by County (3 wells) Key* well 04N23W16C04S - December level was down 8.3 feet from the harch measurement. In general, for wells measured in 2020 in the basin, water levels declined in 7 rells and rose in 3 wells over the course of the year from the 1st quarter eading to the last quarter reading. No Secondary MCL Exceedances for Suffate >250mg/L? No Secondary MC		Total Demand Estimate: 10.392 AF/Yr						
(3 wells) Key" well 04N23W 16C04S - December level was down 8.3 feet from the farch measurement. in general, for wells measured in 2020 in the basin, water levels declined in 7 is and rose in 3 wells over the course of the year from the 1st quarter eading. 5 Year Groundwater Level Trend 2016 - 2020 5 Year Groundwater Level Trend 2016 - 2020 Key" well 04N23W 16C04S: in general for 12 wells consistently measured: (3 wells) (3 wells) Sources of Groundwater Recharge tasin Recharge: percolation of flow in the Ventura River and, to a lesser extent, 0060 Potable Water Sources Groundwater from Lower Ventura River basin. Sufface water from Lake zasitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basins TiDS is known to be high in some parts of the basin (B-118)								
Key' well 04N23W16C04S - December level was down 8.3 feet from the farch measurement. The water in one sample is calcium bicarbonate, and two samples are calcium sulfate type. In general, for wells measured in 2020 in the basin, water levels declined in 7 eading to the last quarter reading. The water in one sample is calcium bicarbonate, and two samples are calcium sulfate type. Stream Groundwater Level Trend 2016 - 2020 Primary MCL Exceedances for Chloride > 250mg/L? No Stream Groundwater Level Trend 2016 - 2020 (*sampled by other agency) Yes, 3 wells Secondary MCL Exceedances for Chloride > 250mg/L? Yes, 1 well Stream Groundwater Quility Trend 2016-2020 (*sampled by other agency) (*sampled by other agency) Stuffate Key' well 04N23W16C04S: (*secondary MCL Exceedances for Chloride > 250mg/L? TDS Superson of for 12 wells consistently measured: (3 wells) (*wells) (*well) (*well) No (*sampled by other agency) Swifate > 20000 (*sampled by other agency) Swifate > 20000 (*sampled by other agency) Superson of flow in the Ventura River and, to a lesser extent, 0 (*well) (*well) (*well) No Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: No. Downgradient: Lower Ventura River basin. Owngradient: No. Downgradient: No.								
Aarch measurement. sulfate type. in general, for wells measured in 2020 in the basin, water levels declined in 7 wells and rose in 3 wells over the course of the year from the 1st quarter eading to the last quarter reading. Primary MCL Exceedances for Nitrate >45mg/l? No Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 3 wells Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Sulfate Yes, 1 well Yes, 1 well Yes, 1 well Sulfate<	"Key" well 04N23W16C04S - December level was down 8.3 feet from the							
In general, for wells measured in 2020 in the basin, water levels declined in 7 wells and rose in 3 wells over the course of the year from the 1st quarter eading. Primary MCL Exceedances for Nitrate >45mg/l? No No Secondary MCL Exceedances for Chloride >250mg/L? No Yes, 3 wells Secondary MCL Exceedances for Chloride >250mg/L? No Strear Groundwater Level Trend 2016 - 2020 Image: Strear Groundwater Cuality Trend 2016-2020 Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 3 wells Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Yes, 3 wells Secondary MCL Exceedances for Chloride 70S Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well <th>March measurement.</th> <th colspan="4"></th>	March measurement.							
In general, for wells measured in 2020 in the basin, water fevels declined in 7 relis and rose in 3 wells over the course of the year from the 1st quarter eading. Secondary MCL Exceedances for Chloride >250mg/L? Yes, 3 wells Secondary MCL Exceedances for TDS >500mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 3 wells Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 3 wells Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 3 wells Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Chloride >250mg/L? Yes, 1 well Yes, 1 well Secondary MCL Exceedances for Chloride >100mg/L? Yes, 1 well Yes, 1 well Yes, 1 well Yes, 1 well Yes, 1 well								
Secondary MCL Exceedances for TDS >500mg/L? Yes, 3 wells Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well Sulfate OdN23W080023 Impact Comments: TDS is known to be ligh in some parts of the basin. Subsurface Hydrologic Connection to Other Groundwater Basins Upgradient: No. Owngradient: Lower Ventura River basin. Subsurface Hydrologic Connection to Other Ground								
Secondary MCL Exceedances for Sulfate >250mg/L? Yes, 1 well 5 Year Groundwater Level Trend 2016 - 2020 (*sampled by other agency) (*sampled by other agency) SWN Nitrate Chloride TDS Sulfate Key" well 04N23W16C04S: 04N23W09G03S Image and the south portion of the basin. Image and the south portion of the basin. Image and the south portion of the basin. Sources of Groundwater Recharge Substrace Hydrologic Connection to Other Groundwater Basins Sources of Groundwater Recharge: Substrace Hydrologic Connection to Other Groundwater Basins Sources of Groundwater Sources Substrace Hydrologic Connection to Other Groundwater Basins Sources of Groundwater from Lower Ventura River and, to a lesser extent, too Upgradient: No. Downgradient: No. Downgradient: No. Downgradient: No. Downgradient: No. Dewr Ventura River basin. Surface water from Lake Downgradient: No. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)								
Key" well 04N23W16C04S: Image: Contract of the part of t	reading to the last quarter reading.							
SWN Nitrate Chloride TDS Sulfate 04N23W09603S 03N23W095P02S* 03N23W05P02S* 03N23W05P02S* 03	5 Year Groundwater Level Trend 2016 - 2020	5 Y	ear Groundwa	ter Quality Trend	2016-2020			
SWN Nitrate Chloride TDS Sulfate 04N23W09603S 03N23W095P02S* 03N23W05P02S* 03N23W05P02S* 03								
Key" well 04N23W16C04S: 		SWN			,	Sulfate		
04N23W09G03S 03N23W05P02S* 03N23W05P02S* 03N23W08C02S* 1 wells is in the north and 2 wells are in the south portion of the basin. Sources of Groundwater Recharge Basin Recharge: percolation of flow in the Ventura River and, to a lesser extent, toof Vpgradient: No. Dyparadient: No. Downgradient: Lower Ventura River basin. Surface water from Lake Casitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)		<u></u>		<u>ee.</u>		<u>e unute</u>		
n general for 12 wells consistently measured: (3 wells) (8 wells) (1 well)		041020000000		\rightarrow				
n general for 12 wells consistently measured: (3 wells) (8 wells) (1 well) →					_			
n general for 12 wells consistently measured: (3 wells) (8 wells) (1 well) Sources of Groundwater Recharge Basin Recharge: percolation of flow in the Ventura River and, to a lesser extent, y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Potable Water Sources Groundwater from Lower Ventura River basin. Surface water from Lake Casitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)			•	*		Ţ		
twells is in the north and 2 wells are in the south portion of the basin. Sources of Groundwater Recharge Basin Recharge: percolation of flow in the Ventura River and, to a lesser extent, y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Potable Water Sources Groundwater from Lower Ventura River basin. Surface water from Lake Casitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)		03N23W08C02S*	$ \rightarrow $	+		1		
Sources of Groundwater Recharge Subsurface Hydrologic Connection to Other Groundwater Basins Basin Recharge: percolation of flow in the Ventura River and, to a lesser extent, y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Upgradient: No. Potable Water Sources Downgradient: Lower Ventura River basin. Groundwater from Lower Ventura River basin. Surface water from Lake Dwr CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118) Description								
Basin Recharge: percolation of flow in the Ventura River and, to a lesser extent, y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Potable Water Sources Groundwater from Lower Ventura River basin. Surface water from Lake Casitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)	▶ 1 ■	1 wells is in the north and 2 wells are in the south portion of the basin.						
y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Downgradient: Lower Ventura River basin. Y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Downgradient: Lower Ventura River basin. Y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Downgradient: Lower Ventura River basin. Y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Downgradient: Lower Ventura River basin. Y percolation of rainfall to the valley floor and excess irrigation water. (DWR, 1006) Downgradient: Lower Ventura River basin. Y percolation of rainfall to the valley floor and excess irrigation water from Lake Casitas MVD to various water purveyors. Downgradient: Lower Ventura River basin. Y percolation of the valley floor and excess irrigation water. (DWR, 1000) Downgradient: Lower Ventura River basin. Y percolation of the valley floor and excess irrigation water. (DWR, 1000) Downgradient: Lower Ventura River basin. Y percolation of the valley floor and excess irrigation water from Lake Casitas MVD to various water purveyors. Downgradient: Lower Ventura River basin. Y percolation of the valley floor and excess irrigation water from Lake Casitas MVD to various water purveyors. Downgradient: Lower Ventura River basin. Y percolation of the valley floor and excess irrigation water from Lake Casitas MVD to various water purveyors. Downgradient to valley floor and excess irrigation to v	Sources of Groundwater Recharge							
006) Potable Water Sources Sroundwater from Lower Ventura River basin. Surface water from Lake Casitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)	Basin Recharge: percolation of flow in the Ventura River and, to a lesser extent	Upgradient: No.						
Potable Water Sources Froundwater from Lower Ventura River basin. Surface water from Lake Casitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)	by percolation of rainfall to the valley floor and excess irrigation water. (DWR,	Downgradient: Lower	Ventura River b	asin.				
Sroundwater from Lower Ventura River basin. Surface water from Lake Casitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)	2006)							
Casitas via Casitas MWD to various water purveyors. DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)								
DWR CASGEM Groundwater Basin Prioritization Level - Medium Impact Comments: TDS is known to be high in some parts of the basin (B-118)								
Impact Comments: TDS is known to be high in some parts of the basin (B-118)	Casitas via Casitas MWD to various water purveyors.							
	Impact Comments: TDS is known to be high in some parts of the basin (B-118)							
Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend 🔿 🛛 Level trending up 🚹 🛛 Level Trending down 🐥	Groundwater Quality Trend Notes: Trend is relatively flat, or no clear trend	Level trending u	p 🚹 🛛 Leve	I Trending down	↓			